scispace - formally typeset
Search or ask a question
Author

Martin Svenda

Bio: Martin Svenda is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Femtosecond & Diffraction. The author has an hindex of 22, co-authored 54 publications receiving 4048 citations. Previous affiliations of Martin Svenda include Uppsala University & Lawrence Livermore National Laboratory.


Papers
More filters
Journal ArticleDOI
Henry N. Chapman1, Petra Fromme2, Anton Barty, Thomas A. White, Richard A. Kirian2, Andrew Aquila, Mark S. Hunter2, Joachim Schulz, Daniel P. DePonte, Uwe Weierstall2, R. Bruce Doak2, Filipe R. N. C. Maia3, Andrew V. Martin, Ilme Schlichting4, Lukas Lomb4, Nicola Coppola5, Robert L. Shoeman4, Sascha W. Epp4, Robert Hartmann, Daniel Rolles4, Artem Rudenko4, Lutz Foucar4, Nils Kimmel4, Georg Weidenspointner4, Peter Holl, Mengning Liang, Miriam Barthelmess, Carl Caleman, Sébastien Boutet6, Michael J. Bogan6, Jacek Krzywinski6, Christoph Bostedt6, Saša Bajt, Lars Gumprecht, Benedikt Rudek4, Benjamin Erk4, Carlo Schmidt4, André Hömke4, Christian Reich, Daniel Pietschner4, Lothar Strüder4, Günter Hauser4, H. Gorke7, Joachim Ullrich4, Sven Herrmann4, Gerhard Schaller4, Florian Schopper4, Heike Soltau, Kai-Uwe Kühnel4, Marc Messerschmidt6, John D. Bozek6, Stefan P. Hau-Riege8, Matthias Frank8, Christina Y. Hampton6, Raymond G. Sierra6, Dmitri Starodub6, Garth J. Williams6, Janos Hajdu3, Nicusor Timneanu3, M. Marvin Seibert3, M. Marvin Seibert6, Jakob Andreasson3, Andrea Rocker3, Olof Jönsson3, Martin Svenda3, Stephan Stern, Karol Nass1, Robert Andritschke4, Claus Dieter Schröter4, Faton Krasniqi4, Mario Bott4, Kevin Schmidt2, Xiaoyu Wang2, Ingo Grotjohann2, James M. Holton9, Thomas R. M. Barends4, Richard Neutze10, Stefano Marchesini9, Raimund Fromme2, Sebastian Schorb11, Daniela Rupp11, M. Adolph11, Tais Gorkhover11, Inger Andersson12, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, John C. H. Spence2 
03 Feb 2011-Nature
TL;DR: This work offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage, by using pulses briefer than the timescale of most damage processes.
Abstract: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded(1-3). It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source(4). We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes(5). More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (similar to 200 nm to 2 mm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes(6). This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

1,708 citations

Journal ArticleDOI
M. Marvin Seibert1, Tomas Ekeberg1, Filipe R. N. C. Maia1, Martin Svenda1, Jakob Andreasson1, Olof Jönsson1, Dusko Odic1, Bianca Iwan1, Andrea Rocker1, Daniel Westphal1, Max F. Hantke1, Daniel P. DePonte, Anton Barty, Joachim Schulz, Lars Gumprecht, Nicola Coppola, Andrew Aquila, Mengning Liang, Thomas A. White, Andrew V. Martin, Carl Caleman1, Stephan Stern2, Chantal Abergel3, Virginie Seltzer3, Jean-Michel Claverie3, Christoph Bostedt4, John D. Bozek4, Sébastien Boutet4, A. Miahnahri4, Marc Messerschmidt4, Jacek Krzywinski4, Garth J. Williams4, Keith O. Hodgson4, Michael J. Bogan4, Christina Y. Hampton4, Raymond G. Sierra4, D. Starodub4, Inger Andersson5, Sǎa Bajt, Miriam Barthelmess, John C. H. Spence6, Petra Fromme6, Uwe Weierstall6, Richard A. Kirian6, Mark S. Hunter6, R. Bruce Doak6, Stefano Marchesini7, Stefan P. Hau-Riege8, Matthias Frank8, Robert L. Shoeman9, Lukas Lomb9, Sascha W. Epp9, Robert Hartmann, Daniel Rolles9, Artem Rudenko9, Carlo Schmidt9, Lutz Foucar9, Nils Kimmel9, Peter Holl, Benedikt Rudek9, Benjamin Erk9, André Hömke9, Christian Reich, Daniel Pietschner9, Georg Weidenspointner9, Lothar Strüder9, Günter Hauser9, H. Gorke, Joachim Ullrich9, Ilme Schlichting9, Sven Herrmann9, Gerhard Schaller9, Florian Schopper9, Heike Soltau, Kai Uwe Kuhnel9, Robert Andritschke9, Claus Dieter Schröter9, Faton Krasniqi9, Mario Bott9, Sebastian Schorb10, Daniela Rupp10, M. Adolph10, Tais Gorkhover10, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, Henry N. Chapman2, Janos Hajdu1 
03 Feb 2011-Nature
TL;DR: This work shows that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source.
Abstract: The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. Two papers in this issue of Nature present proof-of-concept experiments showing the LCLS in action. Chapman et al. tackle structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. They obtain more than three million diffraction patterns from a stream of nanocrystals of the membrane protein photosystem I, and assemble a three-dimensional data set for this protein. Seibert et al. obtain images of a non-crystalline biological sample, mimivirus, by injecting a beam of cooled mimivirus particles into the X-ray beam. The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique. X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1,2,3,4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.

838 citations

Journal ArticleDOI
TL;DR: A proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser is presented with a modified version of the expand, maximize and compress algorithm.
Abstract: We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.

295 citations

Journal ArticleDOI
TL;DR: In this article, a single 15 femtosecond soft-X-ray pulse was used to image a nanoscale object in free flight for the first time, an important step toward imaging uncrystallized biomolecules.
Abstract: In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

232 citations

Journal ArticleDOI
TL;DR: It is shown that a beam of aerosolised cyanobacteria can be introduced into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios, and it is demonstrated that it is possible torecord diffraction data to nanometer resolution on live cells with X-ray lasers.
Abstract: There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

166 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2019
TL;DR: Recent developments in the Phenix software package are described in the context of macromolecular structure determination using X-rays, neutrons and electrons.
Abstract: Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.

3,268 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: This review extensively discusses the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral,Anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti- cancer activity of Ag NPs.
Abstract: Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.

1,720 citations

Journal ArticleDOI
TL;DR: Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.
Abstract: Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.

1,651 citations