scispace - formally typeset
Search or ask a question
Author

Martin Van Essen

Bio: Martin Van Essen is an academic researcher from McMaster University. The author has contributed to research in topics: Exercise physiology & Sports drink. The author has an hindex of 2, co-authored 2 publications receiving 1112 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Data demonstrate that SIT is a time‐efficient strategy to induce rapid adaptations in skeletal muscle and exercise performance that are comparable to ET in young active men.
Abstract: Brief, intense exercise training may induce metabolic and performance adaptations comparable to traditional endurance training. However, no study has directly compared these diverse training strategies in a standardized manner. We therefore examined changes in exercise capacity and molecular and cellular adaptations in skeletal muscle after low volume sprint-interval training (SIT) and high volume endurance training (ET). Sixteen active men (21 +/- 1 years, ) were assigned to a SIT or ET group (n = 8 each) and performed six training sessions over 14 days. Each session consisted of either four to six repeats of 30 s 'all out' cycling at approximately 250% with 4 min recovery (SIT) or 90-120 min continuous cycling at approximately 65% (ET). Training time commitment over 2 weeks was approximately 2.5 h for SIT and approximately 10.5 h for ET, and total training volume was approximately 90% lower for SIT versus ET ( approximately 630 versus approximately 6500 kJ). Training decreased the time required to complete 50 and 750 kJ cycling time trials, with no difference between groups (main effects, P

1,081 citations

Journal ArticleDOI
TL;DR: Adding 2% protein to a 6% carbohydrate drink provided no additional performance benefit during a task that closely simulated the manner in which athletes typically compete, but improving an 80-km TT performance in trained male cyclists was found.
Abstract: Introduction: Recent studies have reported that adding approximately 2% protein to a carbohydrate sports drink increased cycle endurance capacity compared with carbohydrate alone. Howver, the practical implications of these studies work are hampered by the following limitations: (a) the rate of carbohydrate ingestion was less than what is considered optimal for endurance performance, and (b) the performance test (exercise time to fatigue) did not mimic the way in which athletes typically compete (i.e., a race in which a fixed distance or set amount of work is performed as quickly as possible). Purpose: We tested the hypothesis that adding 2% protein to a 6% carbohydrate drink (CHO-PRO) would improve 80-km cycling time trial performance, as compared with a 6% carbohydrate drink (CHO) and a nonenergetic sweetened placebo (PLAC). Methods: Ten trained male cyclists (24 ± 2 yr; V?O2peak = 63 ± 2 mL·kg-1·min-1; mean ± SE) performed an 80-km laboratory time trial (TT) on three occasions separated by 7 d. In a double-blind crossover manner, subjects ingested CHO-PRO, CHO, or PLAC at a rate of 250 mL every 15 min with no temporal, verbal, or physiological feedback. Results: Time to complete the TT was 4.4% lower (P < 0.002) during CHO (135 ± 9 min) and CHO-PRO (135 ± 9) compared with PLAC (141 ± 10), with no difference between CHO and CHO-PRO (P = 0.92). Conclusion: Ingesting 6% carbohydrate at a rate of 1 L·h-1 (60 g·h-1) improved an 80-km TT performance in trained male cyclists. However, adding 2% protein to a 6% carbohydrate drink provided no additional performance benefit during a task that closely simulated the manner in which athletes typically compete.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Some of the mechanisms responsible for improved skeletal muscle metabolic control and changes in cardiovascular function in response to low‐ volume HIT are reviewed and insight is provided on the utility of low‐volume HIT for improving performance in athletes.
Abstract: Exercise training is a clinically proven, cost-effective, primary intervention that delays and in many cases prevents the health burdens associated with many chronic diseases. However, the precise type and dose of exercise needed to accrue health benefits is a contentious issue with no clear consensus recommendations for the prevention of inactivity-related disorders and chronic diseases. A growing body of evidence demonstrates that high-intensity interval training (HIT)canserveasaneffectivealternatetotraditionalendurance-basedtraining,inducingsimilar or even superior physiological adaptations in healthy individuals and diseased populations, at least when compared on a matched-work basis. While less well studied, low-volume HIT can also stimulate physiological remodelling comparable to moderate-intensity continuous training despite a substantially lower time commitment and reduced total exercise volume. Such findings areimportantgiventhat'lackoftime'remainsthemostcommonlycitedbarriertoregularexercise participation. Here we review some of the mechanisms responsible for improved skeletal muscle metabolic control and changes in cardiovascular function in response to low-volume HIT. We also consider the limited evidence regarding the potential application of HIT to people with, or at risk for, cardiometabolic disorders including type 2 diabetes. Finally, we provide insight on the utility of low-volume HIT for improving performance in athletes and highlight suggestions for future research.

1,362 citations

Journal ArticleDOI
TL;DR: Given the markedly lower training volume in the SIT group, these data suggest that high‐intensity interval training is a time‐efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.
Abstract: Low-volume ‘sprint’ interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 ± 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake ( ˙ VO2peak) before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s ‘all out’ Wingate Test (mean power output ∼500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40‐60 min of continuous cycling at a workload that elicited ∼65% ˙ VO2peak (mean power output ∼150 W) per day, 5 days per week. Weekly time commitment (∼1.5 versus ∼4.5 h) and total training volume (∼225 versus ∼2250 kJ week −1 ) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1α protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-γ coactivator-1α. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time-efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.

1,151 citations

Journal ArticleDOI
TL;DR: HIIT significantly increases CRF by almost double that of MICT in patients with lifestyle-induced chronic diseases, with a significantly higher increase in the VO2peak after HIIT.
Abstract: Background/Aim Cardiorespiratory fitness (CRF) is a strong determinant of morbidity and mortality. In athletes and the general population, it is established that high-intensity interval training (HIIT) is superior to moderate-intensity continuous training (MICT) in improving CRF. This is a systematic review and metaanalysis to quantify the efficacy and safety of HIIT compared to MICT in individuals with chronic cardiometabolic lifestyle diseases. Methods The included studies were required to have a population sample of chronic disease, where poor lifestyle is considered as a main contributor to the disease. The procedural quality of the studies was assessed by use of a modified Physiotherapy Evidence Base Database (PEDro) scale. A meta-analysis compared the mean difference (MD) of preintervention versus postintervention CRF (VO2peak) between HIIT and MICT. Results 10 studies with 273 patients were included in the meta-analysis. Participants had coronary artery disease, heart failure, hypertension, metabolic syndrome and obesity. There was a significantly higher increase in the VO2peak after HIIT compared to MICT (MD 3.03 mL/kg/ min, 95% CI 2.00 to 4.07), equivalent to 9.1%. Conclusions HIIT significantly increases CRF by almost double that of MICT in patients with lifestyle-induced chronic diseases.

918 citations

Journal ArticleDOI
TL;DR: This position paper reviews the current scientific data related to the energy needs of athletes, assessment of body composition, strategies for weight change, the nutrient and fluid needs of Athletes, special nutrient needs during training, the use of supplements and nutritional ergogenic aids, and the nutrition recommendations for vegetarian athletes.
Abstract: It is the position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine that physical activity, athletic performance, and recovery from exercise are enhanced by optimal nutrition. These organizations recommend appropriate selection of foods and fluids, timing of intake, and supplement choices for optimal health and exercise performance. This updated position paper couples a rigorous, systematic, evidence-based analysis of nutrition and performance-specific literature with current scientific data related to energy needs, assessment of body composition, strategies for weight change, nutrient and fluid needs, special nutrient needs during training and competition, the use of supplements and ergogenic aids, nutrition recommendations for vegetarian athletes, and the roles and responsibilities of sports dietitians. Energy and macronutrient needs, especially carbohydrate and protein, must be met during times of high physical activity to maintain body weight, replenish glycogen stores, and provide adequate protein to build and repair tissue. Fat intake should be sufficient to provide the essential fatty acids and fat-soluble vitamins, as well as contribute energy for weight maintenance. Although exercise performance can be affected by body weight and composition, these physical measures should not be a criterion for sports performance and daily weigh-ins are discouraged. Adequate food and fluid should be consumed before, during, and after exercise to help maintain blood glucose concentration during exercise, maximize exercise performance, and improve recovery time. Athletes should be well hydrated before exercise and drink enough fluid during and after exercise to balance fluid losses. Sports beverages containing carbohydrates and electrolytes may be consumed before, during, and after exercise to help maintain blood glucose concentration, provide fuel for muscles, and decrease risk of dehydration and hyponatremia. Vitamin and mineral supplements are not needed if adequate energy to maintain body weight is consumed from a variety of foods. However, athletes who restrict energy intake, use severe weight-loss practices, eliminate one or more food groups from their diet, or consume unbalanced diets with low micronutrient density, may require supplements. Because regulations specific to nutritional ergogenic aids are poorly enforced, they should be used with caution, and only after careful product evaluation for safety, efficacy, potency, and legality. A qualified sports dietitian and in particular in the United States, a Board Certified Specialist in Sports Dietetics, should provide individualized nutrition direction and advice subsequent to a comprehensive nutrition assessment.

820 citations

Journal ArticleDOI
TL;DR: This position paper outlines the Academy's, DC's and ACSM's stance on nutrition factors that have been determined to influence athletic performance and emerging trends in the field of sports nutrition.
Abstract: It is the position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine that the performance of, and recovery from, sporting activities are enhanced by well-chosen nutrition strategies. These organizations provide guidelines for the appropriate type, amount, and timing of intake of food, fluids, and supplements to promote optimal health and performance across different scenarios of training and competitive sport. This position paper was prepared for members of the Academy of Nutrition and Dietetics, Dietitians of Canada (DC), and American College of Sports Medicine (ACSM), other professional associations, government agencies, industry, and the public. It outlines the Academy's, DC's and ACSM's stance on nutrition factors that have been determined to influence athletic performance and emerging trends in the field of sports nutrition. Athletes should be referred to a registered dietitian/nutritionist for a personalized nutrition plan. In the United States and in Canada, the Certified Specialist in Sports Dietetics (CSSD) is a registered dietitian/nutritionist and a credentialed sports nutrition expert.

796 citations