scispace - formally typeset
Search or ask a question
Author

Martin W. Allen

Bio: Martin W. Allen is an academic researcher from University of Canterbury. The author has contributed to research in topics: Schottky diode & Schottky barrier. The author has an hindex of 26, co-authored 110 publications receiving 2241 citations. Previous affiliations of Martin W. Allen include MacDiarmid Institute for Advanced Materials and Nanotechnology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a relationship was found between the barrier height of the contact and the free energy of formation of its metal oxide, consistent with the dominating influence of oxygen vacancies (VO) which tend to pin the ZnO Fermi level close to the VO (+2,0) defect level at approximately 0.7eV below the conduction band minimum.
Abstract: Ni, Ir, Pd, Pt, and silver oxide Schottky contacts were fabricated on the Zn-polar face of hydrothermally grown, bulk ZnO. A relationship was found between the barrier height of the contact and the free energy of formation of its “metal” oxide. This is consistent with the dominating influence of oxygen vacancies (VO) which tend to pin the ZnO Fermi level close to the VO (+2,0) defect level at approximately 0.7eV below the conduction band minimum. Therefore, a key goal in the fabrication of high quality Schottky contacts should be the minimization of oxygen vacancies near the metal-ZnO interface.

211 citations

Journal ArticleDOI
TL;DR: In this article, Pd, Pt, Au, and Ag Schottky diodes with low ideality factors were fabricated on the Zn-polar (0001) and Opolar faces of bulk, single crystal ZnO wafers.
Abstract: Planar Pd, Pt, Au, and Ag Schottky diodes with low ideality factors were fabricated on the Zn-polar (0001) and O-polar (0001¯) faces of bulk, single crystal ZnO wafers. The diodes were characterized by current-voltage and capacitance-voltage measurements. A polarity effect was observed for Pt and Pd diodes with higher quality barriers achieved on the O-polar face. No significant polarity effect was observed for Au or Ag diodes. The highest barriers were achieved with Ag as the Schottky metal with barrier heights varying between 0.77 and 1.02eV. This is possibly due to varying degrees of oxidation of the Ag contacts.

152 citations

Journal ArticleDOI
TL;DR: In this paper, the surface conductivity of ZnO was investigated using magnetotransport measurements and x-ray photo-emission spectroscopy, and the downward band bending was consistent with electron accumulation.
Abstract: Magnetotransport measurements and x-ray photoemission spectroscopy were used to investigate the surface conductivity of ZnO Near-surface downward band bending, consistent with electron accumulation, was found on the polar and nonpolar faces of bulk ZnO single crystals A significant polarity effect was observed in that the downward band bending was consistently stronger on the Zn-polar face and weaker on the O-polar face The surface electron accumulation layer was found to significantly influence the electrical properties of high resistivity, hydrothermally grown bulk ZnO crystals at temperatures below 200 K, and is largely responsible for the anomalously low electron mobility reported for this material

107 citations

Journal ArticleDOI
TL;DR: In this paper, the Hall effect, photoluminescence, and Schottky diode measurements were made on the Zn-polar and Opolar faces of undoped, bulk, single crystal, c-axis ZnO wafers.
Abstract: Hall effect, photoluminescence, and Schottky diode measurements were made on the Zn-polar and O-polar faces of undoped, bulk, single crystal, c-axis ZnO wafers. Significant polarity related differences were observed in the PL and Schottky diode characteristics of low carrier concentration, hydrothermally grown wafers. Increased emission from free exciton recombinations and from recombinations between 3.3725 and 3.3750eV was observed on the Zn-polar face. Conversely, emission between 3.3640 and 3.3680eV was more intense on the O-polar face. The barrier heights of silver oxide Schottky diodes were approximately 130meV larger on the Zn-polar face compared to the O-polar face.

102 citations

Journal ArticleDOI
TL;DR: In this article, surface sensitive synchrotron x-ray photoelectron spectroscopy (XPS) and real-time in situ XPS were used to study the thermal stability of the hydroxyl termination and downward band bending on the polar surfaces of ZnO single crystals.
Abstract: Surface sensitive synchrotron x-ray photoelectron spectroscopy (XPS) and real-time in situ XPS were used to study the thermal stability of the hydroxyl termination and downward band bending on the polar surfaces of ZnO single crystals. On the O-polar face, the position of the Fermi level could be reversibly cycled between the conduction band and the band gap over an energetic distance of approximately 0.8 eV (\ensuremath{\sim}1/4 of the band gap) by controlling the surface H coverage using simple ultrahigh vacuum (UHV) heat treatments up to 750 \ifmmode^\circ\else\textdegree\fi{}C, dosing with HO/H and atmospheric exposure. A metallic to semiconductorlike transition in the electronic nature of the O-polar face was observed at an H coverage of approximately 0.9 monolayers. For H coverage less than this, semiconducting (depleted) O-polar surfaces were created that were reasonably stable in UHV conditions. In contrast, the downward band bending on the Zn-polar face was significantly more resilient, and depleted surfaces could not be prepared by heat treatment alone.

88 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2013-Stroke
TL;DR: These guidelines supersede the prior 2007 guidelines and 2009 updates and support the overarching concept of stroke systems of care and detail aspects of stroke care from patient recognition; emergency medical services activation, transport, and triage; through the initial hours in the emergency department and stroke unit.
Abstract: Background and Purpose—The authors present an overview of the current evidence and management recommendations for evaluation and treatment of adults with acute ischemic stroke. The intended audienc...

7,214 citations

Journal ArticleDOI
01 Dec 2019-Stroke
TL;DR: These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks.
Abstract: Background and Purpose- The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations in a single document for clinicians caring for adult patients with acute arterial ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 Acute Ischemic Stroke (AIS) Guidelines and are an update of the 2018 AIS Guidelines. Methods- Members of the writing group were appointed by the American Heart Association (AHA) Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. An update of the 2013 AIS Guidelines was originally published in January 2018. This guideline was approved by the AHA Science Advisory and Coordinating Committee and the AHA Executive Committee. In April 2018, a revision to these guidelines, deleting some recommendations, was published online by the AHA. The writing group was asked review the original document and revise if appropriate. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent to 14 peer reviewers. The writing group evaluated the peer reviewers' comments and revised when appropriate. The current final document was approved by all members of the writing group except when relationships with industry precluded members from voting and by the governing bodies of the AHA. These guidelines use the American College of Cardiology/AHA 2015 Class of Recommendations and Level of Evidence and the new AHA guidelines format. Results- These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. Conclusions- These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.

3,819 citations

Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods can be found in this paper, where the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronics, and energy harvesting devices.
Abstract: One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.

1,247 citations

Journal ArticleDOI
TL;DR: In this paper, a red quantum-dot light-emitting diodes with an external quantum efficiency of 18, close to the theoretical maximum of 20%, were reported, using a layer of zinc oxide nanocrystals providing highly effective electron transport.
Abstract: Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W−1.

1,009 citations