scispace - formally typeset
Search or ask a question
Author

Martin Wilson

Bio: Martin Wilson is an academic researcher from University of Birmingham. The author has contributed to research in topics: Medicine & Lipid droplet. The author has an hindex of 33, co-authored 98 publications receiving 4626 citations. Previous affiliations of Martin Wilson include Edinburgh Napier University & Raigmore Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration and experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays.

1,181 citations

Journal ArticleDOI
TL;DR: Interactions between transition metal salts and a surrogate environmental particle-ultrafine carbon black suggest ultrafine particles and metals interact by chemical potentiation in a cell-free environment to generate ROS and in the lung, ultra fine particles and iron salts interact in a potentiative manner to generate inflammation.

434 citations

Journal ArticleDOI
TL;DR: TARQUIN has been shown to be an accurate and robust algorithm for the analysis of magnetic resonance spectroscopy data making it suitable for use in a clinical setting.
Abstract: Totally Automatic Robust Quantitation in NMR (TARQUIN), a new method for the fully automatic analysis of short echo time in vivo (1)H Magnetic resonance spectroscopy is presented. Analysis is performed in the time domain using non-negative least squares, and a new method for applying soft constraints to signal amplitudes is used to improve fitting stability. Initial point truncation and Hankel singular value decomposition water removal are used to reduce baseline interference. Three methods were used to test performance. First, metabolite concentrations from six healthy volunteers at 3 T were compared with LCModel™. Second, a Monte-Carlo simulation was performed and results were compared with LCModel™ to test the accuracy of the new method. Finally, the new algorithm was applied to 1956 spectra, acquired clinically at 1.5 T, to test robustness to noisy, abnormal, artifactual, and poorly shimmed spectra. Discrepancies of less than approximately 20% were found between the main metabolite concentrations determined by TARQUIN and LCModel™ from healthy volunteer data. The Monte-Carlo simulation revealed that errors in metabolite concentration estimates were comparable with LCModel™. TARQUIN analyses were also found to be robust to clinical data of variable quality. In conclusion, TARQUIN has been shown to be an accurate and robust algorithm for the analysis of magnetic resonance spectroscopy data making it suitable for use in a clinical setting.

300 citations

Journal ArticleDOI
11 Mar 2015-BMJ
TL;DR: In this article, the authors identified potentially serious drug-drug interactions between drugs recommended in the guideline for type 2 diabetes, heart failure, and depression in relation to 11 other common conditions and drugs recommended by NICE guidelines for those conditions.
Abstract: Objective To identify the number of drug-disease and drug-drug interactions for exemplar index conditions within National Institute of Health and Care Excellence (NICE) clinical guidelines. Design Systematic identification, quantification, and classification of potentially serious drug-disease and drug-drug interactions for drugs recommended by NICE clinical guidelines for type 2 diabetes, heart failure, and depression in relation to 11 other common conditions and drugs recommended by NICE guidelines for those conditions. Setting NICE clinical guidelines for type 2 diabetes, heart failure, and depression Main outcome measures Potentially serious drug-disease and drug-drug interactions. Results Following recommendations for prescription in 12 national clinical guidelines would result in several potentially serious drug interactions. There were 32 potentially serious drug-disease interactions between drugs recommended in the guideline for type 2 diabetes and the 11 other conditions compared with six for drugs recommended in the guideline for depression and 10 for drugs recommended in the guideline for heart failure. Of these drug-disease interactions, 27 (84%) in the type 2 diabetes guideline and all of those in the two other guidelines were between the recommended drug and chronic kidney disease. More potentially serious drug-drug interactions were identified between drugs recommended by guidelines for each of the three index conditions and drugs recommended by the guidelines for the 11 other conditions: 133 drug-drug interactions for drugs recommended in the type 2 diabetes guideline, 89 for depression, and 111 for heart failure. Few of these drug-disease or drug-drug interactions were highlighted in the guidelines for the three index conditions. Conclusions Drug-disease interactions were relatively uncommon with the exception of interactions when a patient also has chronic kidney disease. Guideline developers could consider a more systematic approach regarding the potential for drug-disease interactions, based on epidemiological knowledge of the comorbidities of people with the disease the guideline is focused on, and should particularly consider whether chronic kidney disease is common in the target population. In contrast, potentially serious drug-drug interactions between recommended drugs for different conditions were common. The extensive number of potentially serious interactions requires innovative interactive approaches to the production and dissemination of guidelines to allow clinicians and patients with multimorbidity to make informed decisions about drug selection.

245 citations

Journal ArticleDOI
TL;DR: A consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions, and use of the semi‐adiabatic localization by adiabatic selective refocusing sequence is a recommended solution.
Abstract: Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Abstract: Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

7,092 citations

Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations

Journal ArticleDOI
TL;DR: The evidence for adverse effects on health of selected air pollutants is discussed, and it is unclear whether a threshold concentration exists for particulate matter and ozone below which no effect on health is likely.

4,010 citations

Posted Content
TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
Abstract: This review is written with the goal of informing public health concerns related to nanoscience, while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to nanoparticles and dust from natural sources and human activities, the recent development of industry and combustion-based engine transportation profoundly increasing anthropogenic nanoparticulate pollution. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Among diseases associated with nanoparticles are asthma, bronchitis, lung cancer, neurodegenerative diseases (such as Parkinson`s and Alzheimer`s diseases), Crohn`s disease, colon cancer. Nanoparticles that enter the circulatory system are related to occurrence of arteriosclerosis, and blood clots, arrhythmia, heart diseases, and ultimately cardiac death. We show that possible adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, and agglomeration state. The faster we will understand their causes and mechanisms, the more likely we are to find cures for diseases associated with nanoparticle exposure. We foresee a future with better-informed, and hopefully more cautious manipulation of engineered nanomaterials, as well as the development of laws and policies for safely managing all aspects of nanomaterial manufacturing, industrial and commercial use, and recycling.

2,652 citations