scispace - formally typeset
Search or ask a question
Author

Marty G. Woldorff

Bio: Marty G. Woldorff is an academic researcher from Duke University. The author has contributed to research in topics: N2pc & Stimulus (physiology). The author has an hindex of 64, co-authored 192 publications receiving 20015 citations. Previous affiliations of Marty G. Woldorff include University of Texas Health Science Center at San Antonio & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: When used in concert with authors' deeper knowledge of an experiment, the TD system provides consistent and comprehensive labels for brain activation foci, which is better than that of the expert group.
Abstract: An automated coordinate-based system to retrieve brain labels from the 1988 Talairach Atlas, called the Talairach Daemon (TD), was previously introduced (Lancaster et al., 1997). In the present study, the TD system and its 3-D database of labels for the 1988 Talairach atlas were tested for labeling of functional activation foci. TD system labels were compared with author-designated labels of activation coordinates from over 250 published functional brain-mapping studies and with manual atlas-derived labels from an expert group using a subset of these activation coordinates. Automated labeling by the TD system compared well with authors' labels, with a 70% or greater label match averaged over all locations. Author-label matching improved to greater than 90% within a search range of 65 mm for most sites. An adaptive grey matter (GM) range-search utility was evaluated using individual activations from the M1 mouth region (30 subjects, 52 sites). It provided an 87% label match to Brodmann area labels (B A4&B A 6) within a search range of 65 mm. Using the adaptive GM range search, the TD system's overall match with authors' labels (90%) was better than that of the expert group (80%). When used in concert with authors' deeper knowledge of an experiment, the TD system provides consistent and comprehensive labels for brain activation foci. Additional suggested applications of the TD system include interactive labeling, anatomical grouping of activation foci, lesion-deficit analysis, and neuroanatomy education. Hum. Brain Mapping 10:120 -131, 2000. © 2000 Wiley-Liss, Inc.

3,380 citations

Journal ArticleDOI
TL;DR: It is determined that attentional lapses begin with reduced prestimulus activity in anterior cingulate and right prefrontal regions involved in controlling attention, and increased stimulus-evoked activity in the right inferior frontal gyrus and the right temporal-parietal junction predicted better performance on the next trial.
Abstract: Momentary lapses in attention frequently impair goal-directed behavior, sometimes with serious consequences. Nevertheless, we lack an integrated view of the brain mechanisms underlying such lapses. By investigating trial-by-trial relationships between brain activity and response time in humans, we determined that attentional lapses begin with reduced prestimulus activity in anterior cingulate and right prefrontal regions involved in controlling attention. Less efficient stimulus processing during attentional lapses was also characterized by less deactivation of a 'default-mode' network, reduced stimulus-evoked sensory activity, and increased activity in widespread regions of frontal and parietal cortex. Finally, consistent with a mechanism for recovering from attentional lapses, increased stimulus-evoked activity in the right inferior frontal gyrus and the right temporal-parietal junction predicted better performance on the next trial. Our findings provide a new, system-wide understanding of the patterns of brain activity that are associated with brief attentional lapses, which informs both theoretical and clinical models of goal-directed behavior.

1,480 citations

Journal ArticleDOI
TL;DR: These findings point to a more intimate and multifaceted interplay between attention and multisensory integration than was previously thought, and propose a framework that unifies previous, apparently discordant, findings.

642 citations

Journal ArticleDOI
TL;DR: A possible interpretation of these results is that Stroop color-word interference first activates anterior cingulate cortex followed by activation of the left temporo-parietal cortex, possibly related to the need of additional processing of word meaning.

616 citations

Journal ArticleDOI
TL;DR: It is demonstrated that focused auditory attention in humans can selectively modulate sensory processing in auditory cortex beginning as early as 20 msec poststimulus, thereby providing strong evidence for an "early selection" mechanism of auditory attention that can regulate auditory input at or before the initial stages of cortical analysis.
Abstract: Neuromagnetic fields were recorded from human subjects as they listened selectively to sequences of rapidly presented tones in one ear while ignoring tones of a different pitch in the opposite ear. Tones in the attended ear evoked larger magnetic brain responses than did unattended tones in the latency ranges 20-50 msec and 80-130 msec poststimulus. Source localization techniques in conjunction with magnetic resonance imaging placed the neural generators of these early attention-sensitive brain responses in auditory cortex on the supratemporal plane. These data demonstrate that focused auditory attention in humans can selectively modulate sensory processing in auditory cortex beginning as early as 20 msec poststimulus, thereby providing strong evidence for an "early selection" mechanism of auditory attention that can regulate auditory input at or before the initial stages of cortical analysis.

594 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.

13,678 citations

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.
Abstract: The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

5,279 citations