scispace - formally typeset
Search or ask a question
Author

Mary Devlin

Bio: Mary Devlin is an academic researcher. The author has contributed to research in topics: Phage display & Peptide. The author has an hindex of 6, co-authored 8 publications receiving 819 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2 are reported.
Abstract: Combinatorial libraries of rearranged hypervariable V(H) and V(L) sequences from nonimmunized human donors contain antigen specificities, including anti-self reactivities, created by random pairing of V(H)s and V(L)s. Somatic hypermutation of immunoglobulin genes, however, is critical in the generation of high-affinity antibodies in vivo and occurs only after immunization. Thus, in combinatorial phage display libraries from nonimmunized donors, high-affinity antibodies are rarely found. Lengthy in vitro affinity maturation is often needed to improve antibodies from such libraries. We report the construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2. The success of this strategy is demonstrated by identifying many monovalent Fabs against multiple therapeutic targets that show higher affinities than approved therapeutic antibodies. This very often circumvents the need for affinity maturation, accelerating discovery of antibody drug candidates.

361 citations

Journal ArticleDOI
TL;DR: The discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage demonstrates that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors.

208 citations

Journal ArticleDOI
TL;DR: The technology allows the generation and production of antigen-specific complete human antibodies as fast or even faster than raising monoclonal antibodies by conventional hybridoma techniques.

102 citations

Journal ArticleDOI
TL;DR: Several phage isolates that bind specifically to human serum albumin were isolated from disulfide‐constrained cyclic peptide phage‐display libraries and one of the highest affinity peptides, DX‐236, also bound well to several mammalian serum albumins (SA).
Abstract: Several phage isolates that bind specifically to human serum albumin (HSA) were isolated from disulfide-constrained cyclic peptide phage-display libraries. The majority of corresponding synthetic peptides bind with micromolar affinity to HSA in low salt at pH 6.2, as determined by fluorescence anisotropy. One of the highest affinity peptides, DX-236, also bound well to several mammalian serum albumins (SA). Immobilized DX-236 quantitatively captures HSA from human serum; mild conditions (100 mM Tris, pH 9.1) allow release of HSA. The DX-236 affinity column bound HSA from human serum with a greater specificity than does Cibacron Blue agarose beads. In addition to its likely utility in HSA and other mammalian SA purifications, this peptide media may be useful in the proteomics and medical research markets for selective removal of mammalian albumin from serum prior to mass spectrometric and other analyses.

97 citations

Journal ArticleDOI
TL;DR: A novel and general way of generating high affinity peptide (HAP) binders to receptor tyrosine kinases (RTKs) using a multi-step process comprising phage-display selection, identification of peptide pairs suitable for hetero-dimerization and chemical synthesis of heterodimers is described.
Abstract: We describe a novel and general way of generating high affinity peptide (HAP) binders to receptor tyrosine kinases (RTKs), using a multi-step process comprising phage-display selection, identification of peptide pairs suitable for hetero-dimerization (non-competitive and synergistic) and chemical synthesis of heterodimers. Using this strategy, we generated HAPs with K D s below 1 nM for VEGF receptor-2 (VEGFR-2) and c-Met. VEGFR-2 HAPs bound significantly better (6- to 500-fold) than either of the individual peptides that were used for heterodimer synthesis. Most significantly, HAPs were much better (150- to 800-fold) competitors than monomers of the natural ligand (VEGF) in various competitive binding and functional assays. In addition, we also found the binding of HAPs to be less sensitive to serum than their component peptides. We believe that this method may be applied to any protein for generating high affinity peptide (HAP) binders.

57 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Abstract: Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells Together our data indicate that ACE2 is a functional receptor for SARS-CoV

5,149 citations

Journal ArticleDOI
Paul Carter1
TL;DR: The generation of potent antibody therapeutics, which I review here, is an iterative design process that involves the generation and optimization of antibodies to improve their clinical potential.
Abstract: Antibodies constitute the most rapidly growing class of human therapeutics and the second largest class of drugs after vaccines. The generation of potent antibody therapeutics, which I review here, is an iterative design process that involves the generation and optimization of antibodies to improve their clinical potential.

1,265 citations

Journal ArticleDOI
Hennie R. Hoogenboom1
TL;DR: The first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Abstract: During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.

1,057 citations

Journal ArticleDOI
TL;DR: In this paper, a low molecular weight (LMW) serum proteome was extracted from serum and analyzed using microcapillary reversed-phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

830 citations

Journal ArticleDOI
TL;DR: The recent advances made in understanding the role of MMPs in inflammatory diseases and the therapeutic potential of M Parliamentary metalloproteinases inhibition in those conditions are discussed.
Abstract: Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that form a family of 24 members in mammals. Evidence of the pathological roles of MMPs in various diseases, combined with their druggability, has made them attractive therapeutic targets. Initial drug discovery efforts focused on the roles of MMPs in cancer progression, and more than 50 MMP inhibitors have been investigated in clinical trials in various cancers. However, all of these trials failed. Reasons for failure include the lack of inhibitor specificity and insufficient knowledge about the complexity of the disease biology. MMPs are also known to be involved in several inflammatory processes, and there are new therapeutic opportunities for MMP inhibitors to treat such diseases. In this Review, we discuss the recent advances made in understanding the role of MMPs in inflammatory diseases and the therapeutic potential of MMP inhibition in those conditions.

626 citations