scispace - formally typeset
Search or ask a question
Author

Mary Gagen

Bio: Mary Gagen is an academic researcher from Swansea University. The author has contributed to research in topics: Dendroclimatology & Climate change. The author has an hindex of 27, co-authored 46 publications receiving 2623 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modeling (BHM), together with estimates of European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS).
Abstract: The spatial context is criticalwhen assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatiotemporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951-2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986-2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850-2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.

270 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a correction procedure that attempts to calculate the δ13C values that would have been obtained under pre-industrial conditions using nonlinear regression, but the magnitude of the adjustment made is restricted by two logical constraints based on the physiological response of trees.

230 citations

Journal Article
TL;DR: In this article, the authors proposed a correction procedure that attempts to calculate the δ13C values that would have been obtained under pre-industrial conditions using nonlinear regression, but the magnitude of the adjustment made is restricted by two logical constraints based on the physiological response of trees.

215 citations

Journal ArticleDOI
TL;DR: In this paper, stable carbon isotope ratios from the latewood cellulose of 12 trees from two sites in northern Finland are used to construct an isotope chronology covering AD 1640 to 2002.
Abstract: Stable carbon isotope ratios from the latewood cellulose of 12 trees from two sites in northern Finland are used to construct an isotope chronology covering AD 1640 to 2002. By measuring isotopic ratios of every sample independently it is possible to identify and remove the juvenile portion of each 13 C series, correct the individual series for anthropogenic changes in atmospheric carbon dioxide isotopic ratios and concentrations, and to quantify changes in signal strength through time. Most importantly, it is pos- sible to demonstrate that there are no long-term trends in the carbon isotope series that are related to tree age. This means that it is not necessary to detrend the series and so they have the potential to retain cli- mate information at all temporal frequencies. The correlation between the non-detrended carbon isotope series and July/August mean temperature is high (r 0.72) and comparison with meteorological records suggests that the dominant control over tree ring 13 C at these high latitude, moist sites is photosynthetic rate rather than stomatal conductance. Summer temperature reconstructions based on three different cal- ibrations are presented, with verification based on a mixture of jacknife and split period designs, provid- ing robust and near identical results. Reconstructed late summer temperatures in the early 1900s are very low but the years centred around AD 1660 and 1760 appear to have experienced warmer summers than the late twentieth century, thus our late summer reconstruction does not show a recent warming trend. Our results are in agreement with other palaeoclimate reconstructions for northern Fennoscandia, which show late twentieth-century warming occurring predominantly in the winter. Our results suggest that, where replication and common signal strength are sufficiently high, stable carbon isotope dendroclimatology may provide high resolution proxy time series that also record climate information at lower temporal frequen- cies, thus avoiding the 'segment length curse' that can apply to palaeoclimate reconstructions based on other tree ring parameters such as ring widths and density.

172 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE, which will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.
Abstract: The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land– atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.

171 citations


Cited by
More filters
01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of isotope dendroclimatology, explaining the underlying theory and describing the steps taken in building and interpreting isotope chronologies.

1,531 citations

Journal ArticleDOI
11 Sep 2020-Science
TL;DR: A new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in the authors' laboratories reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
Abstract: Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

655 citations