scispace - formally typeset
Search or ask a question

Showing papers by "Mary K. Gilles published in 2008"


Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Scanning transmission X-ray microscopy can be used at atmospheric pressure and up to 350 °C to monitor in situ phase changes in a complex iron-based Fisher–Tropsch catalyst and the nature and location of carbon species produced.
Abstract: The modern chemical industry uses heterogeneous catalysts in almost every production process. They commonly consist of nanometre-size active components (typically metals or metal oxides) dispersed on a high-surface-area solid support, with performance depending on the catalysts' nanometre-size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale. Scanning probe microscopy methods have been used to study inorganic catalyst phases at subnanometre resolution, but detailed chemical information of the materials in their working state is often difficult to obtain. By contrast, optical microspectroscopic approaches offer much flexibility for in situ chemical characterization; however, this comes at the expense of limited spatial resolution. A recent development promising high spatial resolution and chemical characterization capabilities is scanning transmission X-ray microscopy, which has been used in a proof-of-principle study to characterize a solid catalyst. Here we show that when adapting a nanoreactor specially designed for high-resolution electron microscopy, scanning transmission X-ray microscopy can be used at atmospheric pressure and up to 350 degrees C to monitor in situ phase changes in a complex iron-based Fisher-Tropsch catalyst and the nature and location of carbon species produced. We expect that our system, which is capable of operating up to 500 degrees C, will open new opportunities for nanometre-resolution imaging of a range of important chemical processes taking place on solids in gaseous or liquid environments.

364 citations


Journal ArticleDOI
TL;DR: In this article, a soft X-ray micro-analysis was performed on particles extracted from the Stardust aerogel collector in order to obtain detailed organic functional group information on any organic solids captured as part of the Principal Examination suite of analyses for samples from comet 81P/Wild 2.
Abstract: Synchrotron-based soft X-ray micro-analysis was performed on particles extracted from the Stardust aerogel collector in order to obtain detailed organic functional group information on any organic solids captured as part of the Principal Examination suite of analyses for samples from comet 81P/Wild 2. It is observed that cometary organic carbon captured in aerogel is present in a number of different manifestations and often intimately associated with silicates. Carbon X-ray absorption near edge structure (XANES) spectra reveal considerable chemical complexity in all of the organic particles studied so far. Universally, the comet 81P/Wild 2 organic particles contain low concentrations of aromatic and/or olefinic carbon relative to aliphatic and heteroatom-containing functional groups, e.g., amide, carboxyl, and alcohol/ethers. N-XANES confirms the presence and assignments of these functional groups. In general, the XANES data record considerable chemical complexity across the range of organic samples currently analyzed. The atomic ratios, N/C and O/C, derived from XANES data reveal a wide range in heteroatom content; in all cases these elemental ratios are higher than that of primitive meteoritic organic matter. The wide range in chemistry, both in elemental abundances and specific organic functional groups, suggests that the comet 81P/Wild 2 organic solids may have multiple origins.

151 citations


Journal ArticleDOI
TL;DR: The unique single particle chemical associations measured in this study closely match signatures indicative of waste incineration and show these industrial emissions play an important role in heterogeneous processing of NO(y) species.
Abstract: Recent ice core measurements show lead concentrations increasing since 1970, suggesting new nonautomobile-related sources of Pb are becoming important worldwide(1). Developing a full understanding of the major sources of Pb and other metals is critical to controlling these emissions. During the March, 2006 MILAGRO campaign, single particle measurements in Mexico City revealed the frequent appearance of particles internally mixed with Zn, Pb, Cl, and P. Pb concentrations were as high as 1.14 μg/m3 in PM10 and 0.76 μg/m3 in PM2.5. Real time measurements were used to select time periods of interest to perform offline analysis to obtain detailed aerosol speciation. Many Zn-rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2·6H2O. The internally mixed Pb−Zn−Cl particles represented as much as 73% of the fine mode particles (by number) in the morning hours between 2−5 am. The Pb−Zn−Cl particles were primarily in the submicrometer size range and typically mixed with ele...

140 citations


Journal ArticleDOI
TL;DR: In this paper, the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast was performed.
Abstract: [1] Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. On the basis of composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3−) and non-sea-salt sulfate (nss-SO42−) in sea-salt particles with characteristic ratios of nss-S/Na > 0.10 and CH3SO3−/nss-SO42− > 0.6.

94 citations