scispace - formally typeset
Search or ask a question
Author

Maryse Guay

Bio: Maryse Guay is an academic researcher from Université de Sherbrooke. The author has contributed to research in topics: Vaccination & Influenza vaccine. The author has an hindex of 17, co-authored 55 publications receiving 1556 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review provides an overview of the phenomenon of vaccine Hesitancy and suggests the possible causes of the apparent increase in vaccine hesitancy in the developed world.
Abstract: Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination.

1,356 citations

Journal ArticleDOI
TL;DR: The results show the heterogeneity of factors influencing vaccine decision making and although the majority of vaccine-hesitant mothers finally chose to follow the recommended vaccine schedule for their child, they were still ambivalent and they continued to question their decision.
Abstract: Parents’ decision to use vaccination services is complex and multi-factorial. Of particular interest are “vaccine-hesitant” parents who are in the middle of the continuum between vaccine acceptance and refusal. The objective of this qualitative longitudinal study was to better understand why mothers choose to vaccinate—or not—their newborns. Fifty-six pregnant mothers living in different areas of Quebec (Canada) were interviewed. These interviews gathered information on mothers’ views about health and vaccination. Almost half of the mothers were categorized as vaccine-hesitant. A second interview was conducted with these mothers 3 to 11 months after birth to look at their actual decision and behavior concerning vaccination. Our results show the heterogeneity of factors influencing vaccine decision making. Although the majority of vaccine-hesitant mothers finally chose to follow the recommended vaccine schedule for their child, they were still ambivalent and they continued to question their decision.

119 citations

Journal ArticleDOI
03 Jun 2016-PLOS ONE
TL;DR: It is indicated that both vaccine experts and front-line vaccine providers have the perception that vaccine rates have been declining and consider vaccine hesitancy an important issue to address in Canada.
Abstract: “Vaccine hesitancy” is a concept now frequently used in vaccination discourse. The increased popularity of this concept in both academic and public health circles is challenging previously held perspectives that individual vaccination attitudes and behaviours are a simple dichotomy of accept or reject. A consultation study was designed to assess the opinions of experts and health professionals concerning the definition, scope, and causes of vaccine hesitancy in Canada. We sent online surveys to two panels (1- vaccination experts and 2- front-line vaccine providers). Two questionnaires were completed by each panel, with data from the first questionnaire informing the development of questions for the second. Our participants defined vaccine hesitancy as an attitude (doubts, concerns) as well as a behaviour (refusing some / many vaccines, delaying vaccination). Our findings also indicate that both vaccine experts and front-line vaccine providers have the perception that vaccine rates have been declining and consider vaccine hesitancy an important issue to address in Canada. Diffusion of negative information online and lack of knowledge about vaccines were identified as the key causes of vaccine hesitancy by the participants. A common understanding of vaccine hesitancy among researchers, public health experts, policymakers and health care providers will better guide interventions that can more effectively address vaccine hesitancy within Canada.

118 citations

Journal ArticleDOI
TL;DR: The burden of pneumonia before routine use of the pneumococcal conjugate vaccine was substantial in all age groups of the Canadian population and provides a baseline for further analysis of the direct and indirect impacts of the vaccine.
Abstract: BACKGROUND: In the United States, implementation of the seven-valent conjugate vaccine into childhood immunization schedules has had an effect on the burden of pneumococcal disease in all ages of the population. To evaluate the impact in Canada, it is essential to have an estimate of the burden of pneumococcal disease before routine use of the vaccine.

71 citations

Journal ArticleDOI
08 Sep 2003-Vaccine
TL;DR: To estimate cost-effectiveness of routine and catch-up vaccination of Canadian children with seven-valent pneumococcal conjugate vaccine, a simulation model was constructed and vaccine purchase cost is the most important variable in sensitivity analyses.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is concluded that saturation should be operationalized in a way that is consistent with the research question(s), and the theoretical position and analytic framework adopted, but also that there should be some limit to its scope, so as to risk saturation losing its coherence and potency if its conceptualization and uses are stretched too widely.
Abstract: Saturation has attained widespread acceptance as a methodological principle in qualitative research. It is commonly taken to indicate that, on the basis of the data that have been collected or analysed hitherto, further data collection and/or analysis are unnecessary. However, there appears to be uncertainty as to how saturation should be conceptualized, and inconsistencies in its use. In this paper, we look to clarify the nature, purposes and uses of saturation, and in doing so add to theoretical debate on the role of saturation across different methodologies. We identify four distinct approaches to saturation, which differ in terms of the extent to which an inductive or a deductive logic is adopted, and the relative emphasis on data collection, data analysis, and theorizing. We explore the purposes saturation might serve in relation to these different approaches, and the implications for how and when saturation will be sought. In examining these issues, we highlight the uncertain logic underlying saturation—as essentially a predictive statement about the unobserved based on the observed, a judgement that, we argue, results in equivocation, and may in part explain the confusion surrounding its use. We conclude that saturation should be operationalized in a way that is consistent with the research question(s), and the theoretical position and analytic framework adopted, but also that there should be some limit to its scope, so as not to risk saturation losing its coherence and potency if its conceptualization and uses are stretched too widely.

4,750 citations

Journal Article
TL;DR: This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices regarding the use of influenza vaccine for the prevention and control of seasonal influenza and includes a summary of safety data for U.S. licensed influenza vaccines.
Abstract: This report updates the 2009 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2009;58[No. RR-8] and CDC. Use of influenza A (H1N1) 2009 monovalent vaccine---recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58:[No. RR-10]). The 2010 influenza recommendations include new and updated information. Highlights of the 2010 recommendations include 1) a recommendation that annual vaccination be administered to all persons aged >or=6 months for the 2010-11 influenza season; 2) a recommendation that children aged 6 months--8 years whose vaccination status is unknown or who have never received seasonal influenza vaccine before (or who received seasonal vaccine for the first time in 2009-10 but received only 1 dose in their first year of vaccination) as well as children who did not receive at least 1 dose of an influenza A (H1N1) 2009 monovalent vaccine regardless of previous influenza vaccine history should receive 2 doses of a 2010-11 seasonal influenza vaccine (minimum interval: 4 weeks) during the 2010--11 season; 3) a recommendation that vaccines containing the 2010-11 trivalent vaccine virus strains A/California/7/2009 (H1N1)-like (the same strain as was used for 2009 H1N1 monovalent vaccines), A/Perth/16/2009 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; 4) information about Fluzone High-Dose, a newly approved vaccine for persons aged >or=65 years; and 5) information about other standard-dose newly approved influenza vaccines and previously approved vaccines with expanded age indications. Vaccination efforts should begin as soon as the 2010-11 seasonal influenza vaccine is available and continue through the influenza season. These recommendations also include a summary of safety data for U.S.-licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2010-11 influenza season also will be available at this website. Recommendations for influenza diagnosis and antiviral use will be published before the start of the 2010-11 influenza season. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.

1,659 citations

Journal ArticleDOI
TL;DR: This report updates the 2017–18 recommendations of the Advisory Committee on Immunization Practices regarding the use of seasonal influenza vaccines in the United States and focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2018–19 season.
Abstract: This report updates the 2020-21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021-22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).The 2021-22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html.Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021-22 season are expected to be quadrivalent. Second, the composition of 2021-22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture-based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021-22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.

1,388 citations

Reference EntryDOI
TL;DR: This review presents findings from 25 studies comparing inactivated parenteral influenza vaccine against placebo or do-nothing control groups as the most relevant to decision-making over single influenza seasons in North America, South America, and Europe between 1969 and 2009.
Abstract: Background Different types of influenza vaccines are currently produced worldwide. Healthy adults are presently targeted mainly in North America. Objectives Identify, retrieve and assess all studies evaluating the effects of vaccines against influenza in healthy adults. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2010, issue 2), MEDLINE (January 1966 to June 2010) and EMBASE (1990 to June 2010). Selection criteria Randomised controlled trials (RCTs) or quasi-RCTs comparing influenza vaccines with placebo or no intervention in naturally-occurring influenza in healthy individuals aged 16 to 65 years. We also included comparative studies assessing serious and rare harms. Data collection and analysis Two review authors independently assessed trial quality and extracted data. Main results We included 50 reports. Forty (59 sub-studies) were clinical trials of over 70,000 people. Eight were comparative non-RCTs and assessed serious harms. Two were reports of harms which could not be introduced in the data analysis. In the relatively uncommon circumstance of vaccine matching the viral circulating strain and high circulation, 4% of unvaccinated people versus 1% of vaccinated people developed influenza symptoms (risk difference (RD) 3%, 95% confidence interval (CI) 2% to 5%). The corresponding figures for poor vaccine matching were 2% and 1% (RD 1, 95% CI 0% to 3%). These differences were not likely to be due to chance. Vaccination had a modest effect on time off work and had no effect on hospital admissions or complication rates. Inactivated vaccines caused local harms and an estimated 1.6 additional cases of Guillain-Barre Syndrome per million vaccinations. The harms evidence base is limited. Authors' conclusions Influenza vaccines have a modest effect in reducing influenza symptoms and working days lost. There is no evidence that they affect complications, such as pneumonia, or transmission. WARNING: This review includes 15 out of 36 trials funded by industry (four had no funding declaration). An earlier systematic review of 274 influenza vaccine studies published up to 2007 found industry funded studies were published in more prestigious journals and cited more than other studies independently from methodological quality and size. Studies funded from public sources were significantly less likely to report conclusions favorable to the vaccines. The review showed that reliable evidence on influenza vaccines is thin but there is evidence of widespread manipulation of conclusions and spurious notoriety of the studies. The content and conclusions of this review should be interpreted in light of this finding.

870 citations