scispace - formally typeset
Search or ask a question
Author

Masafumi Miyatake

Bio: Masafumi Miyatake is an academic researcher from Sophia University. The author has contributed to research in topics: Maximum power point tracking & Photovoltaic system. The author has an hindex of 20, co-authored 88 publications receiving 2547 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel MPPT algorithm is proposed by introducing a particle swarm optimization (PSO) technique that uses only one pair of sensors to control multiple PV arrays, thereby resulting in lower cost, higher overall efficiency, and simplicity with respect to its implementation.
Abstract: Multiple photovoltaic (PV) modules feeding a common load is the most common form of power distribution used in solar PV systems. In such systems, providing individual maximum power point tracking (MPPT) schemes for each of the PV modules increases the cost. Furthermore, its v-i characteristic exhibits multiple local maximum power points (MPPs) during partial shading, making it difficult to find the global MPP using conventional single-stage (CSS) tracking. To overcome this difficulty, the authors propose a novel MPPT algorithm by introducing a particle swarm optimization (PSO) technique. The proposed algorithm uses only one pair of sensors to control multiple PV arrays, thereby resulting in lower cost, higher overall efficiency, and simplicity with respect to its implementation. The validity of the proposed algorithm is demonstrated through experimental studies. In addition, a detailed performance comparison with conventional fixed voltage, hill climbing, and Fibonacci search MPPT schemes are presented. Algorithm robustness was verified for several complicated partial shading conditions, and in all cases this method took about 2 s to find the global MPP.

527 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads.

269 citations

Journal ArticleDOI
TL;DR: In this paper, an alternative to physical relocation based on particle swarm optimization (PSO) connected modules is proposed, where the physical location of the modules remains unchanged, while its electrical connections are altered.
Abstract: For large photovoltaic power generation plants, number of panels are interconnected in series and parallel to form a photovoltaic (PV) array. In this configuration, partial shade will result in decrease in power output and introduce multiple peaks in the P–V curve. As a consequence, the modules in the array will deliver different row currents. Therefore, to maximize the power extraction from PV array, the panels need to be reconfigured for row current difference minimization. Row current minimization via Su Do Ku game theory do physical relocation of panels may cause laborious work and lengthy interconnecting ties. Hence, in this paper, an alternative to physical relocation based on particle swarm optimization (PSO) connected modules is proposed. In this method, the physical location of the modules remains unchanged, while its electrical connections are altered. Extensive simulations with different shade patterns are carried out and thorough analysis with the help of I–V , P–V curves is carried out to support the usefulness of the proposed method. The effectiveness of proposed PSO technique is evaluated via performance analysis based on energy saving and income generation. Further, a comprehensive comparison of various electrical array reconfiguration based is performed at the last to examine the suitability of proposed array reconfiguration method.

252 citations

Journal ArticleDOI
TL;DR: In this article, the optimal operation of railway systems minimizing total energy consumption is discussed, and three methods of solving the formulation, dynamic programming (DP), gradient method, and sequential quadratic programming (SQP), are introduced.
Abstract: The optimal operation of railway systems minimizing total energy consumption is discussed in this paper. Firstly, some measures of finding energy-saving train speed profiles are outlined. After the characteristics that should be considered in optimizing train operation are clarified, complete optimization based on optimal control theory is reviewed. Their basic formulations are summarized taking into account most of the difficult characteristics peculiar to railway systems. Three methods of solving the formulation, dynamic programming (DP), gradient method, and sequential quadratic programming (SQP), are introduced. The last two methods can also control the state of charge (SOC) of the energy storage devices. By showing some numerical results of simulations, the significance of solving not only optimal speed profiles but also optimal SOC profiles of energy storage are emphasized, because the numerical results are beyond the conventional qualitative studies. Future scope for applying the methods to real-time optimal control is also mentioned. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

217 citations

Journal ArticleDOI
TL;DR: In this paper, a novel strategy of maximum power point tracking is presented for photovoltaic power generation systems based on Fibonacci search algorithm to realize simple control system to track the real maximum power points even under non-uniform or for rapidly changing insolation conditions.

198 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel algorithm to track the global power peak under partially shaded conditions and a feedforward control scheme for operating the DC-DC converter is proposed, which uses the reference voltage information from the tracking algorithm to shift the operation toward the MPP.
Abstract: Current-voltage and power-voltage characteristics of large photovoltaic (PV) arrays under partially shaded conditions are characterized by multiple steps and peaks. This makes the tracking of the actual maximum power point (MPP) [global peak (GP)] a difficult task. In addition, most of the existing schemes are unable to extract maximum power from the PV array under these conditions. This paper proposes a novel algorithm to track the global power peak under partially shaded conditions. The formulation of the algorithm is based on several critical observations made out of an extensive study of the PV characteristics and the behavior of the global and local peaks under partially shaded conditions. The proposed algorithm works in conjunction with a DC-DC converter to track the GP. In order to accelerate the tracking speed, a feedforward control scheme for operating the DC-DC converter is also proposed, which uses the reference voltage information from the tracking algorithm to shift the operation toward the MPP. The tracking time with this controller is about one-tenth as compared to a conventional controller. All the observations and conclusions, including simulation and experimental results, are presented.

978 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an improved maximum power point tracking (MPPT) method for the photovoltaic (PV) system using a modified particle swarm optimization (PSO) algorithm.
Abstract: This paper proposes an improved maximum power point tracking (MPPT) method for the photovoltaic (PV) system using a modified particle swarm optimization (PSO) algorithm. The main advantage of the method is the reduction of the steady- state oscillation (to practically zero) once the maximum power point (MPP) is located. Furthermore, the proposed method has the ability to track the MPP for the extreme environmental condition, e.g., large fluctuations of insolation and partial shading condition. The algorithm is simple and can be computed very rapidly; thus, its implementation using a low-cost microcontroller is possible. To evaluate the effectiveness of the proposed method, MATLAB simulations are carried out under very challenging conditions, namely step changes in irradiance, step changes in load, and partial shading of the PV array. Its performance is compared with the conventional Hill Climbing (HC) method. Finally, an experimental rig that comprises of a buck-boost converter fed by a custom-designed solar array simulator is set up to emulate the simulation. The soft- ware development is carried out in the Dspace 1104 environment using a TMS320F240 digital signal processor. The superiority of the proposed method over the HC in terms of tracking speed and steady-state oscillations is highlighted by simulation and experimental results.

851 citations

Journal ArticleDOI
01 May 2013-Energy
TL;DR: In this paper, the progress made in solar power generation research and development since its inception is reviewed, highlighting the current and future issues involved in the generation of quality and reliable solar power technology for future applications.

787 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed analysis of such optimum sizing approaches in the literature that can make significant contributions to wider renewable energy penetration by enhancing the system applicability in terms of economy.
Abstract: Public awareness of the need to reduce global warming and the significant increase in the prices of conventional energy sources have encouraged many countries to provide new energy policies that promote the renewable energy applications. Such renewable energy sources like wind, solar, hydro based energies, etc. are environment friendly and have potential to be more widely used. Combining these renewable energy sources with back-up units to form a hybrid system can provide a more economic, environment friendly and reliable supply of electricity in all load demand conditions compared to single-use of such systems. One of the most important issues in this type of hybrid system is to optimally size the hybrid system components as sufficient enough to meet all load requirements with possible minimum investment and operating costs. There are many studies about the optimization and sizing of hybrid renewable energy systems since the recent popular utilization of renewable energy sources. In this concept, this paper provides a detailed analysis of such optimum sizing approaches in the literature that can make significant contributions to wider renewable energy penetration by enhancing the system applicability in terms of economy.

635 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the research in this area in the past one decade is presented in this paper, where an attempt has been made to present a comprehensive review on the research on the unit sizing, optimization, energy management and modeling of hybrid renewable energy system components.
Abstract: It has become imperative for the power and energy engineers to look out for the renewable energy sources such as sun, wind, geothermal, ocean and biomass as sustainable, cost-effective and environment friendly alternatives for conventional energy sources. However, the non-availability of these renewable energy resources all the time throughout the year has led to research in the area of hybrid renewable energy systems. In the past few years, a lot of research has taken place in the design, optimization, operation and control of the renewable hybrid energy systems. It is indeed evident that this area is still emerging and vast in scope. The main aim of this paper is to review the research on the unit sizing, optimization, energy management and modeling of the hybrid renewable energy system components. Developments in research on modeling of hybrid energy resources (PV systems), backup energy systems (Fuel Cell, Battery, Ultra-capacitor, Diesel Generator), power conditioning units (MPPT converters, Buck/Boost converters, Battery chargers) and techniques for energy flow management have been discussed in detail. In this paper, an attempt has been made to present a comprehensive review of the research in this area in the past one decade.

627 citations