scispace - formally typeset
Search or ask a question
Author

Masahiko Tani

Bio: Masahiko Tani is an academic researcher from University of Fukui. The author has contributed to research in topics: Terahertz radiation & Laser. The author has an hindex of 43, co-authored 361 publications receiving 6446 citations. Previous affiliations of Masahiko Tani include Osaka University & De La Salle University.


Papers
More filters
Journal ArticleDOI
TL;DR: Terahertz radiation was generated with several designs of photoconductive antennas fabricated on low-temperature-grown GaAs and semi-insulating GaAs, and the emission properties of the photoc conductive antennas were compared with each other.
Abstract: Terahertz radiation was generated with several designs of photoconductive antennas (three dipoles, a bow tie, and a coplanar strip line) fabricated on low-temperature-grown (LT) GaAs and semi-insulating (SI) GaAs, and the emission properties of the photoconductive antennas were compared with each other. The radiation spectrum of each antenna was characterized with the photoconductive sampling technique. The total radiation power was also measured by a bolometer for comparison of the relative radiation power. The radiation spectra of the LT-GaAs–based and SI-GaAs–based photoconductive antennas of the same design showed no significant difference. The pump-power dependencies of the radiation power showed saturation for higher pump intensities, which was more serious in SI-GaAs-based antennas than in LT-GaAs-based antennas. We attributed the origin of the saturation to the field screening of the photocarriers.

471 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the polarity of the THz waveforms of InSb and InAS with that of InP, which is a wide band-gap semiconductor.
Abstract: Terahertz radiation from InSb and InAS, which are typical narrow band-gap semiconductors, was investigated using time-resolved THz emission measurements. When we compared between the polarity of the THz waveforms of these narrow band-gap semiconductors with that of InP, which is a wide bandgap semiconductor, we concluded that the ultrafast buildup of the photo-Dember field is the main mechanism for the emission of THz radiation in both InAs and InSb. The emission efficiency of InSb is approximately one-hundredth of that of InAs, although the electron mobility in InSb is higher than in InAs. Wavelength-dependent measurements implied that the anomalously low THz emission efficiency of InSb might be due to a reduction in transient mobility resulting from the scattering of electrons into the low-mobility L valley.

305 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive comparison between terahertz (THz) time-domain spectroscopy and conventional far-infrared Fourier transform spectrograms is performed, including radiation source, detector, signal to noise ratio, bandwidth, availability, applications, and uniqueness.
Abstract: We perform a comprehensive comparison between terahertz (THz) time-domain spectroscopy and conventional far-infrared Fourier transform spectroscopy, including radiation source, detector, signal to noise ratio, bandwidth, availability, applications, and their own uniqueness. In terms of signal to noise ratio, THz time-domain spectroscopy is advantageous at low frequencies under 3 THz, while Fourier transform spectroscopy works better at frequencies above 5 THz. In addition, we provide a detailed discussion of the unique features of THz time-domain spectroscopy and its application to dynamic and time-resolved processes.

258 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the generation of continuous-wave terahertz radiation at frequencies up to 3.5 THz by photomixing in LT-GaAs photoconductors with printed dipole antennas.
Abstract: We demonstrate the generation of continuous-wave terahertz radiation at frequencies up to 3.5 THz by photomixing in LT-GaAs photoconductors with printed dipole antennas. The expected resonance peak was clearly observed in the radiation spectrum of a 50 μm dipole antenna, and the radiation property was discussed in terms of the antenna impedance. The spectral bandwidth was greater than the electrical bandwidth of the photoconductor determined by the carrier lifetime of the material. The quality of the resonance, however, was not as high as expected because of the imperfect geometry and ohmic loss of the antenna.

256 citations

Journal ArticleDOI
TL;DR: The terahertz time domain spectroscopy (THz-TDS) as mentioned in this paper has been used extensively in the characterization of solids, such as semiconductors, superconductors, polymers, and photonic crystals.
Abstract: Recent development of the terahertz time domain spectroscopy (THz-TDS) and its application to solids have been reviewed. This spectroscopy is unique in that the time-domain wave forms are measured at first and the complex optical constants are deduced directly by the Fourier transformation of them without resort to the Kramers-Kronig analysis. Various types of the THz-TDS systems are briefly described. Applications of the THz-TDS to various solids, i.e., semiconductors, superconductors, polymers, photonic crystals, and so on are also presented to demonstrate how widely this spectroscopy is applicable to characterization of solids.

233 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the status of the terahertz technology, its uses and its future prospects are presented in this article, with a focus on the use of the waveband in a wide range of applications.
Abstract: Research into terahertz technology is now receiving increasing attention around the world, and devices exploiting this waveband are set to become increasingly important in a very diverse range of applications. Here, an overview of the status of the technology, its uses and its future prospects are presented.

5,512 citations

Journal ArticleDOI
TL;DR: It is demonstrated that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping and the results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terAhertz metamaterials.
Abstract: Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials 1–3 . Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour 4–7 that enables new tunable plasmonic metamaterials 8–10 and, potentially, optoelectronic applications in the terahertz frequency range 8,9,11,12 .H ere we explore plasmon excitations in engineered graphene microribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons 4–6 . The plasmon resonances have remarkably large oscillator strengths, resulting

2,701 citations

Journal ArticleDOI
TL;DR: Terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules, as well as novel, higher-power terahertz sources.
Abstract: Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules.

2,673 citations

Journal ArticleDOI
09 May 2002-Nature
TL;DR: A monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure is reported, which is very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.
Abstract: Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.

2,425 citations