scispace - formally typeset
Search or ask a question
Author

Masahiro Funahashi

Bio: Masahiro Funahashi is an academic researcher from Kagawa University. The author has contributed to research in topics: Liquid crystal & Electron mobility. The author has an hindex of 32, co-authored 120 publications receiving 3682 citations. Previous affiliations of Masahiro Funahashi include Tokyo University of Agriculture and Technology & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the design of liquid-crystalline phases, the resultant self-assembled structures, the transport mechanisms, and the fabrication, function and future development of devices incorporating nanostructured liquid crystals are described.
Abstract: The nanosegregated structures of columnar, smectic and bicontinuous cubic liquid crystals can provide well-organized, nano- and sub-nanosized 1D, 2D and 3D channels capable of ion and electron transport. The molecular shape, intermolecular interactions and nanosegregation of the molecular structures can influence their self-assembly into a range of functional liquid-crystalline nanostructures. The formation of stable and soft liquid-crystalline materials leads to their application as electrolytes for batteries and photovoltaics, semiconductors, electroluminescence and electrochemical devices. In addition, electrochemical devices are obtained by using redox-active liquid crystals. In this Review, we focus on the design of liquid-crystalline phases, the resultant self-assembled structures, the transport mechanisms, and the fabrication, function and future development of devices incorporating nanostructured liquid crystals. Liquid-crystalline nanostructures can form well-organized 1D, 2D and 3D channels capable of transporting ions or electrons. In this Review, the design of liquid-crystalline phases, their self-assembled structures, and the fabrication and function of devices incorporating them are described.

292 citations

Journal ArticleDOI
TL;DR: In this article, the carrier transport in different phases of a new photoconductive calamitic liquid crystal, 2-(4\ensuremath{'}-heptyloxyphenyl)-6-dodecylthiobenzothiazole was studied by the time-of-flight technique.
Abstract: The carrier transport in different phases of a new photoconductive calamitic liquid crystal, 2-(4\ensuremath{'}-heptyloxyphenyl)-6-dodecylthiobenzothiazole was studied by the time-of-flight technique: In the smectic A phase, a fast hole transient photocurrent was obtained in a nondispersive manner, in which the mobility was as high as $5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}\phantom{\rule{0ex}{0ex}}{\mathrm{cm}}^{2}/\mathrm{V}\mathrm{s}$ and independent of applied electric field; in the isotropic phase, however, slower carrier transport was observed, probably due to positive or negative ions, and their mobilities were as low as ${10}^{\ensuremath{-}5}\phantom{\rule{0ex}{0ex}}{\mathrm{cm}}^{2}/\mathrm{V}\mathrm{s}$. These experimental results demonstrate the importance of local molecular alignment in creating the fast electronic conduction in calamitic liquid crystals.

233 citations

Journal ArticleDOI
TL;DR: A series of liquid-crystalline (LC) π-conjugated oligothiophenes bearing three or two alkoxy chains at their extremities has been designed and synthesized as discussed by the authors.
Abstract: A series of liquid-crystalline (LC) π--conjugated oligothiophenes bearing three or two alkoxy chains at their extremities has been designed and synthesized. These polycatenar oligothiophenes form various LC nanostructures including smectic, columnar, and micellar cubic phases. These properties depend on the number and length of the terminal alkoxy chains. The hole mobilities for the oligothiophenes have been measured. The layered smectic and columnar structures are capable of transporting holes, leading to mobilities of up to 0.01 cm2 V−1 s−1. The columnar LC assemblies have also been explored to produce linearly polarized light-emission. Fine red polarized fluorescence is observed from a uniaxially aligned film of the oligothiophenes. The redox properties of the oligothiophenes both in solutions and in films have been examined. The oligothiophenes exhibit electrochromism upon applying an oxidative potential. The present design strategy is useful for fabricating a variety of functional electro-active molecular assemblies.

202 citations

Journal ArticleDOI
TL;DR: Tolerance of the carbon-bromine bond to the palladium-catalyzed C-H homocoupling results in oligothiophenes bearing C-Br bonds at the terminal thiophene rings, which allow further transformation by the catalysis of a transition-metal complex.
Abstract: Synthesis of oligothiophenes of well-defined structures that possess 2-8 thiophene units is performed with a new synthetic strategy involving C-H homocoupling of bromothiophenes and cross-coupling with organostannanes. Tolerance of the carbon-bromine bond to the palladium-catalyzed C-H homocoupling results in oligothiophenes bearing C-Br bonds at the terminal thiophene rings, which allow further transformation by the catalysis of a transition-metal complex.

201 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Abstract: 2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The Orthogonality Issue 937 3.1.3. Impact of the Site Energy 937 3.1.4. Electronic Coupling in Oligoacene Derivatives 938

3,635 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

Journal ArticleDOI
TL;DR: The current status of the field of organic solar cells and the important parameters to improve their performance are discussed in this paper. But, the two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents.
Abstract: Organic solar cell research has developed during the past 30 years, but especially in the last decade it has attracted scientific and economic interest triggered by a rapid increase in power conversion efficiencies. This was achieved by the introduction of new materials, improved materials engineering, and more sophisticated device structures. Today, solar power conversion efficiencies in excess of 3% have been accomplished with several device concepts. Though efficiencies of these thin-film organicdevices have not yet reached those of their inorganic counterparts (η ≈ 10–20%); the perspective of cheap production (employing, e.g., roll-to-roll processes) drives the development of organic photovoltaic devices further in a dynamic way. The two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents. The field of organic solar cells profited well from the development of light-emitting diodes based on similar technologies, which have entered the market recently. We review here the current status of the field of organic solar cells and discuss different production technologies as well as study the important parameters to improve their performance.

2,492 citations

Journal ArticleDOI
TL;DR: P palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations.
Abstract: The area of transition-metal-catalyzed direct arylation through cleavage of CH bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners—including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations

2,408 citations

Journal ArticleDOI
TL;DR: This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts.
Abstract: The direct functionalization of heterocyclic compounds has emerged as one of the most important topics in the field of metal-catalyzed C–H bond activation due to the fact that products are an important synthetic motif in organic synthesis, the pharmaceutical industry, and materials science. This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts (113 references).

2,062 citations