scispace - formally typeset
Search or ask a question
Author

Masahiro Muraguchi

Other affiliations: University of Tokushima
Bio: Masahiro Muraguchi is an academic researcher from Otsuka Pharmaceutical. The author has contributed to research in topics: Adiponectin & Adipocyte. The author has an hindex of 18, co-authored 34 publications receiving 12665 citations. Previous affiliations of Masahiro Muraguchi include University of Tokushima.
Topics: Adiponectin, Adipocyte, Aptamer, Stimulation, Antibody

Papers
More filters
Journal ArticleDOI
TL;DR: Plasma concentrations of adiponectin in obese subjects were significantly lower than those in non-obese subjects, although adip onectin is secreted only from adipose tissue.

4,882 citations

Journal ArticleDOI
TL;DR: Results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy, and weight reduction significantly elevated plasma adip onectin levels in the diabetic subjects as well as the nondiabetic subjects.
Abstract: —Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)–matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6±0.4 versus 7.9±0.5 μg/mL in men, 7.6±0.7 versus 11.7±1.0 μg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0±0.4 versus 6.6±0.4 μg/mL, P<0.001 in men; 6.3±0.8 versus 7.6±0.7 μg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fas...

3,172 citations

Journal ArticleDOI
TL;DR: The possibility that adiponectin, which is naturally present in the blood stream, modulates the inflammatory response of endothelial cells through cross talk between cAMP-PKA and NF-&kgr;B signaling pathways is raised.
Abstract: Background—Among the many adipocyte-derived endocrine factors, we found an adipocyte-derived plasma protein, adiponectin, that was decreased in obesity. We recently demonstrated that adiponectin inhibited tumor necrosis factor-α (TNF-α)–induced expression of endothelial adhesion molecules and that plasma adiponectin level was reduced in patients with coronary artery disease (Circulation. 1999;100:2473–2476). However, the intracellular signal by which adiponectin suppressed adhesion molecule expression was not elucidated. The present study investigated the mechanism of modulation for endothelial function by adiponectin. Methods and Results—The interaction between adiponectin and human aortic endothelial cells (HAECs) was estimated by cell ELISA using biotinylated adiponectin. HAECs were preincubated for 18 hours with 50 μg/mL of adiponectin, then exposed to TNF-α (10 U/mL) or vehicle for the times indicated. NF-κB–DNA binding activity was determined by electrophoretic mobility shift assays. TNF-α–inducible...

1,768 citations

Journal ArticleDOI
TL;DR: The adipocyte-derived plasma protein adiponectin suppressed macrophage-to-foam cell transformation, suggesting that adip onectin may act as a modulator for macrophages- to-foams cell transformation.
Abstract: Background—Excessive lipid accumulation in macrophages plays an important role in the development of atherosclerosis. Recently, we discovered an adipocyte-specific plasma protein, adiponectin, that is decreased in patients with coronary artery disease. We previously demonstrated that adiponectin acts as a modulator for proinflammatory stimuli and inhibits monocyte adhesion to endothelial cells. The present study investigated the effects of adiponectin on lipid accumulation in human monocyte-derived macrophages. Methods and Results—Human monocytes were differentiated into macrophages by incubation in human type AB serum for 7 days, and the effects of adiponectin were investigated at different time intervals. Treatment with physiological concentrations of adiponectin reduced intracellular cholesteryl ester content, as determined using the enzymatic, fluorometric method. The adiponectin-treated macrophages contained fewer lipid droplets stained by oil red O. Adiponectin suppressed the expression of the class...

1,270 citations

Journal ArticleDOI
TL;DR: The adipocyte-derived plasma protein adiponectin strongly suppressed HASMC proliferation and migration through direct binding with PDGF-BB and generally inhibited growth factor–stimulated ERK signal in HASMCs, suggesting that adip onectin acts as a modulator for vascular remodeling.
Abstract: Background— Vascular smooth muscle cell proliferation plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the human injured artery and suppressed endothelial inflammatory response as well as macrophage-to-foam cell transformation. The present study investigated the effects of adiponectin on proliferation and migration of human aortic smooth muscle cells (HASMCs). Methods and Results— HASMC proliferation was estimated by [3H] thymidine uptake and cell number. Cell migration assay was performed using a Boyden chamber. Physiological concentrations of adiponectin significantly suppressed both proliferation and migration of HASMCs stimulated with platelet-derived growth factor (PDGF)-BB. Adiponectin specifically bound to 125I-PDGF-BB and significantly inhibited the association of 125I-PDGF-BB with HASMCs, but no effects were observed on the binding of 125I-PDGF-AA or 125I-heparin–binding epidermal growth fa...

704 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations

Journal ArticleDOI
TL;DR: It is proposed that obesity-related insulin resistance is, at least in part, a chronic inflammatory disease initiated in adipose tissue, and that macrophage-related inflammatory activities may contribute to the pathogenesis of obesity-induced insulin resistance.
Abstract: Insulin resistance arises from the inability of insulin to act normally in regulating nutrient metabolism in peripheral tissues Increasing evidence from human population studies and animal research has established correlative as well as causative links between chronic inflammation and insulin resistance However, the underlying molecular pathways are largely unknown In this report, we show that many inflammation and macrophage-specific genes are dramatically upregulated in white adipose tissue (WAT) in mouse models of genetic and high-fat diet-induced obesity (DIO) The upregulation is progressively increased in WAT of mice with DIO and precedes a dramatic increase in circulating-insulin level Upon treatment with rosiglitazone, an insulin-sensitizing drug, these macrophage-originated genes are downregulated Histologically, there is evidence of significant infiltration of macrophages, but not neutrophils and lymphocytes, into WAT of obese mice, with signs of adipocyte lipolysis and formation of multinucleate giant cells These data suggest that macrophages in WAT play an active role in morbid obesity and that macrophage-related inflammatory activities may contribute to the pathogenesis of obesity-induced insulin resistance We propose that obesity-related insulin resistance is, at least in part, a chronic inflammatory disease initiated in adipose tissue

6,165 citations

Journal ArticleDOI
TL;DR: It is concluded that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy and that the replenishment of adiponECTin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Abstract: Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

4,845 citations

Journal ArticleDOI
TL;DR: It is suggested that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Abstract: Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.

4,752 citations