scispace - formally typeset
Search or ask a question
Author

Masakazu Kanechika

Bio: Masakazu Kanechika is an academic researcher from Toyota. The author has contributed to research in topics: Etching (microfabrication) & Layer (electronics). The author has an hindex of 14, co-authored 48 publications receiving 778 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel method for fabricating trench structures on GaN was developed and a smooth non-polar (1100) plane was obtained by wet etching using tetramethylammonium hydroxide (TMAH) as the etchant.
Abstract: A novel method for fabricating trench structures on GaN was developed. A smooth non-polar (1100) plane was obtained by wet etching using tetramethylammonium hydroxide (TMAH) as the etchant. A U-shape trench with the (1100) plane side walls was formed with dry etching and the TMAH wet etching. A U-shape trench gate metal oxide semiconductor field-effect transistor (MOSFET) was also fabricated using the novel etching technology. This device has the excellent normally-off operation of drain current–gate voltage characteristics with the threshold voltage of 10 V. The drain breakdown voltage of 180 V was obtained. The results indicate that the trench gate structure can be applied to GaN-based transistors.

214 citations

Journal ArticleDOI
TL;DR: In this article, a vertical insulated gate AlGaN/GaN heterojunction field effect transistor (HFET) was fabricated using a free-standing GaN substrate, which exhibited a specific on-resistance of as low as 2.6 mΩ·cm2 with a threshold voltage of -16 V.
Abstract: We fabricated a vertical insulated gate AlGaN/GaN heterojunction field-effect transistor (HFET), using a free-standing GaN substrate. This HFET has apertures through which the electron current vertically flows. These apertures were formed by dry etching the p-GaN layer below the gate electrodes and regrowing n--GaN layer without mask. The HFET exhibited a specific on-resistance of as low as 2.6 mΩ·cm2 with a threshold voltage of -16 V. This HFET would be a prototype of a GaN-based high-power switching device.

171 citations

Journal ArticleDOI
TL;DR: In this article, homoepitaxial GaN p-n junction diodes with a negative beveled-mesa termination were investigated using TCAD simulation, and the devices were designed using currently available GaN growth techniques.
Abstract: We report on homoepitaxial GaN p-n junction diodes with a negative beveled-mesa termination. The electric field distribution in a beveled-mesa was investigated using TCAD simulation, and the devices were designed using currently available GaN growth techniques. Shallow-angle (ca. 10°) negative bevel GaN p-n junction diodes were fabricated with various Mg acceptor concentrations in the p-layers. The suppression of electric field crowding and improvement of the breakdown voltage were observed, as the Mg concentration was decreased. The parallel-plane breakdown field of 2.86 MV/cm was obtained for a device with the breakdown voltage of 425 V.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the source of carrier compensation in metalorganic vapor phase epitaxy (MOVPE)-grown n-type GaN was quantitatively investigated by Hall-effect measurement, deep-level transient spectroscopy, and secondary ion mass spectrometry.
Abstract: The source of carrier compensation in metalorganic vapor phase epitaxy (MOVPE)-grown n-type GaN was quantitatively investigated by Hall-effect measurement, deep-level transient spectroscopy, and secondary ion mass spectrometry. These analysis techniques revealed that there were at least three different compensation sources. The carrier compensation for samples with donor concentrations below 5 × 1016 cm−3 can be explained by residual carbon and electron trap E3 (E C − 0.6 eV). For samples with higher donor concentrations, we found a proportional relationship between donor concentration and compensating acceptor concentration, which resulted from a third source of compensation. This is possibly due to the self-compensation effect.

43 citations

Proceedings ArticleDOI
01 Dec 2010
TL;DR: In this article, the authors review the role of the power switching devices in hybrid electric vehicles and pure electric vehicles (EVs) and the required device characteristics, and the recent status of SiC and GaN power devices.
Abstract: A power switching device is one of the key elements to determine the performance of hybrid electric vehicles (HEVs) and pure electric vehicles (EVs). Recently, the power devices using wide-bandgap semiconductors, such as SiC and GaN, have been intensively developed for the future HEVs and EVs. In this paper, we review a role of the power devices in these automotive systems, the required device characteristics, and the recent status of SiC and GaN power devices.

39 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the properties of GaN that make it an attractive alternative to established silicon and emerging SiC power devices and present challenges and innovative solutions to creating enhancement-mode power switches.
Abstract: Recent success with the fabrication of high-performance GaN-on-Si high-voltage HFETs has made this technology a contender for power electronic applications. This paper discusses the properties of GaN that make it an attractive alternative to established silicon and emerging SiC power devices. Progress in development of vertical power devices from bulk GaN is reviewed followed by analysis of the prospects for GaN-on-Si HFET structures. Challenges and innovative solutions to creating enhancement-mode power switches are reviewed.

466 citations

Journal ArticleDOI
20 May 2010
TL;DR: In this article, GaN power transistors on Si substrates for power switching application are reported, and current collapse phenomena are discussed for GaN-HFETs on Si substrate, resulting in suppression of the current collapse due to using the conducting Si substrate.
Abstract: In this paper, GaN power transistors on Si substrates for power switching application are reported. GaN heterojunction field-effect transistor (HFET) structure on Si is an important configuration in order to realize a low loss and high power devices as well as one of the cost-effective solutions. Current collapse phenomena are discussed for GaN-HFETs on Si substrate, resulting in suppression of the current collapse due to using the conducting Si substrate. Furthermore, attempts for normally off GaN-FETs were examined. A hybrid metal-oxide-semiconductor HFET structure is a promising candidate for obtaining devices with a lower on-resistance (Ron) and a high breakdown voltage (Vb).

454 citations

01 Jan 2010
TL;DR: A hybrid metal-oxide-semiconductor HFET structure is a promising candidate for obtaining devices with a lower on-resistance and a high breakdown voltage as well as one of the cost-effective solutions.
Abstract: In this paper, GaN power transistors on Si substrates for power switching application are reported. GaN heterojunction field-effect transistor (HFET) structure on Si is an important configuration in order to realize a low loss and high power devices as well as one of the cost-effective solutions. Current collapse phenomena are discussed for GaN-HFETs on Si substrate, resulting in suppression of the current collapse due to using the conducting Si substrate. Furthermore, attempts for normally off GaN-FETs were exam- ined. A hybrid metal-oxide-semiconductor HFET structure is a promising candidate for obtaining devices with a lower on-resistance ðRonÞ and a high breakdown voltage ðVbÞ.

448 citations

Journal ArticleDOI
TL;DR: In this article, the GaN-based recessed MIS-gate structure in conjunction with negative polarization charges under the gate allows the high threshold voltage, whereas the low on-state resistance is maintained by the 2D electron gas remaining in the channel except for the recessed gate region.
Abstract: This letter reports normally-off operation of an AlGaN/GaN recessed MIS-gate heterostructure field-effect transistor with a high threshold voltage. The GaN-based recessed MIS-gate structure in conjunction with negative polarization charges under the gate allows us to achieve the high threshold voltage, whereas the low on-state resistance is maintained by the 2-D electron gas remaining in the channel except for the recessed MIS-gate region. The fabricated device exhibits a threshold voltage as high as 5.2 V with a maximum field-effect mobility of 120 cm2/Vmiddots, a maximum drain current of over 200 mA/mm, and a breakdown voltage of 400 V.

383 citations