scispace - formally typeset
Search or ask a question
Author

Masaki Nakahata

Bio: Masaki Nakahata is an academic researcher from Osaka University. The author has contributed to research in topics: Self-healing hydrogels & Medicine. The author has an hindex of 20, co-authored 45 publications receiving 3884 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host–guest interactions are reported and cyclodextrin is employed as a host molecule because it is environmentally benign and has diverse applications.
Abstract: Stimulus-responsive hydrogels have previously been developed that display heat-, light-, pH- or redox-induced sol–gel transitions. Nakahata et al. develop a self-healing supramolecular hydrogel based on host–guest polymers in which redox potential can induce a reversible sol–gel phase transition.

1,140 citations

Journal ArticleDOI
TL;DR: This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years, and uses the molecular recognition of CDs to achieve macroscopic self-assemblies, and this chemistry can direct these macroscopy objects into even larger aggregated structures.
Abstract: CONSPECTUS: Cyclodextrins (CDs) have many attractive functions, including molecular recognition, hydrolysis, catalysis, and polymerization. One of the most important uses of CDs is for the molecular recognition of hydrophobic organic guest molecules in aqueous solutions. CDs are desirable host molecules because they are environmentally benign and offer diverse functions. This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years. In 1990, we developed topological supramolecular complexes with CDs, polyrotaxane, and CD tubes, and these preparation methods take advantage of self-organization between the CDs and the polymers. The combination of polyrotaxane with αCD forms a hydrogel through the interaction of αCDs with the OH groups on poly(ethylene glycol). We categorized these polyrotaxane chemistries within main chain type complexes. At the same time, we studied the interactions of side chain type supramolecular complexes with CDs. In these systems the guest molecules modified the polymers and selectively formed inclusion complexes with CDs. The systems that used low molecular weight compounds did not show such selectivity with CDs. The multivalency available within the complex cooperatively enhances the selective binding of CD with guest molecules via the polymer side chains, a phenomenon that is analogous to binding patterns observed in antigen-antibody complexes. To incorporate the molecular recognition properties of CDs within the polymer side chains, we first prepared stimuli-responsive sol-gel switching materials through host-guest interactions. We chose azobenzene derivatives for their response to light and ferrocene derivatives for their response to redox conditions. The supramolecular materials were both redox-responsive and self-healing, and these properties resulted from host-guest interactions. These sol-gels with built in switches gave us insight for creating materials that were self-healing or could serve as artificial muscle. Furthermore, we developed another self-healing material with CD inclusion complexes that showed selective self-healing properties after its surface was cut. These CD self-healing materials do not include chemical cross-linkers; instead the inclusion complex of CDs with guest molecules stabilized the material's strength. However, by introducing chemical cross-linkers into the hydrogels, we produced materials that could expand and contract. The chemical cross-linked hydrogels with responsive groups bent in response to external stimuli, and the cross-linkers controlled the ratio of inclusion complexes. Furthermore, we used the molecular recognition of CDs to achieve macroscopic self-assemblies, and this chemistry can direct these macroscopic objects into even larger aggregated structures. As we have demonstrated, reversible host-guest interactions have tremendous potential for the creation of a wide variety of functional materials.

692 citations

Journal ArticleDOI
TL;DR: A photoresponsive supramolecular actuator is designed by integrating host–guest interactions and photoswitching ability in a hydrogel by integratingHost–guerilla interactions and Photoswitching Ability in a Hydrogel.
Abstract: The development of stimulus-responsive polymeric materials is of great importance, especially for the development of remotely manipulated materials not in direct contact with an actuator. Here we design a photoresponsive supramolecular actuator by integrating host-guest interactions and photoswitching ability in a hydrogel. A photoresponsive supramolecular hydrogel with α-cyclodextrin as a host molecule and an azobenzene derivative as a photoresponsive guest molecule exhibits reversible macroscopic deformations in both size and shape when irradiated by ultraviolet light at 365 nm or visible light at 430 nm. The deformation of the supramolecular hydrogel depends on the incident direction. The selectivity of the incident direction allows plate-shaped hydrogels to bend in water. Irradiating with visible light immediately restores the deformed hydrogel. A light-driven supramolecular actuator with α-cyclodextrin and azobenzene stems from the formation and dissociation of an inclusion complex by ultraviolet or visible light irradiation.

584 citations

Journal ArticleDOI
TL;DR: Supramolecular hydrogels formed by a host-guest interaction show self-healing properties, and contact between a freshly cut and uncut surface does not mend the gels, but two freshly cut surfaces selectively mend.
Abstract: Supramolecular hydrogels formed by a host-guest interaction show self-healing properties. The cube-shaped hydrogels with β-cyclodextrin and adamantane guest molecules mend after being broken. The hydrogels sufficiently heal to form a single gel, and the initial strength is restored. Although contact between a freshly cut and uncut surface does not mend the gels, two freshly cut surfaces selectively mend.

502 citations

Journal ArticleDOI
TL;DR: This work employed two different kinds of host-guest inclusion complexes of β-cyclodextrin with adamantane and ferrocene to bind polymers together to form a supramolecular hydrogel (βCD-Ad-Fc gel), which showed self-healing ability when damaged and responded to redox stimuli by expansion or contraction.
Abstract: Supramolecular materials cross-linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross-linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host-guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host-guest inclusion complexes of β-cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD-Ad-Fc gel). The βCD-Ad-Fc gel showed self-healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD-Ad-Fc gel showed a redox-responsive shape-morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.

422 citations


Cited by
More filters
Journal ArticleDOI
05 May 2017-Science
TL;DR: The advances in making hydrogels with improved mechanical strength and greater flexibility for use in a wide range of applications are reviewed, foreseeing opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales.
Abstract: BACKGROUND Hydrogels are formed through the cross-linking of hydrophilic polymer chains within an aqueous microenvironment. The gelation can be achieved through a variety of mechanisms, spanning physical entanglement of polymer chains, electrostatic interactions, and covalent chemical cross-linking. The water-rich nature of hydrogels makes them broadly applicable to many areas, including tissue engineering, drug delivery, soft electronics, and actuators. Conventional hydrogels usually possess limited mechanical strength and are prone to permanent breakage. The lack of desired dynamic cues and structural complexity within the hydrogels has further limited their functions. Broadened applications of hydrogels, however, require advanced engineering of parameters such as mechanics and spatiotemporal presentation of active or bioactive moieties, as well as manipulation of multiscale shape, structure, and architecture. ADVANCES Hydrogels with substantially improved physicochemical properties have been enabled by rational design at the molecular level and control over multiscale architecture. For example, formulations that combine permanent polymer networks with reversibly bonding chains for energy dissipation show strong toughness and stretchability. Similar strategies may also substantially enhance the bonding affinity of hydrogels at interfaces with solids by covalently anchoring the polymer networks of tough hydrogels onto solid surfaces. Shear-thinning hydrogels that feature reversible bonds impart a fluidic nature upon application of shear forces and return back to their gel states once the forces are released. Self-healing hydrogels based on nanomaterial hybridization, electrostatic interactions, and slide-ring configurations exhibit excellent abilities in spontaneously healing themselves after damages. Additionally, harnessing techniques that can dynamically and precisely configure hydrogels have resulted in flexibility to regulate their architecture, activity, and functionality. Dynamic modulations of polymer chain physics and chemistry can lead to temporal alteration of hydrogel structures in a programmed manner. Three-dimensional printing enables architectural control of hydrogels at high precision, with a potential to further integrate elements that enable change of hydrogel configurations along prescribed paths. OUTLOOK We envision the continuation of innovation in new bioorthogonal chemistries for making hydrogels, enabling their fabrication in the presence of biological species without impairing cellular or biomolecule functions. We also foresee opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales. In addition, technologies that precisely regulate the physicochemical properties of hydrogels in spatiotemporally controlled manners are crucial in controlling their dynamics, such as degradation and dynamic presentation of biomolecules. We believe that the fabrication of hydrogels should be coupled with end applications in a feedback loop in order to achieve optimal designs through iterations. In the end, it is the combination of multiscale constituents and complementary strategies that will enable new applications of this important class of materials.

1,588 citations

Journal ArticleDOI
TL;DR: It is reported that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties.
Abstract: Hydrogels attract great attention as biomaterials as a result of their soft and wet nature, similar to that of biological tissues. Recent inventions of several tough hydrogels show their potential as structural biomaterials, such as cartilage. Any given application, however, requires a combination of mechanical properties including stiffness, strength, toughness, damping, fatigue resistance and self-healing, along with biocompatibility. This combination is rarely realized. Here, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties. The randomness makes ionic bonds of a wide distribution of strength. The strong bonds serve as permanent crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. These physical hydrogels of supramolecular structure can be tuned to change multiple mechanical properties over wide ranges by using diverse ionic combinations. This polyampholyte approach is synthetically simple and dramatically increases the choice of tough hydrogels for applications.

1,496 citations

Journal ArticleDOI
TL;DR: The latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks are discussed, paving the way to applications and the realization of a new era of “molecular nanotechnology”.
Abstract: The widespread use of molecular machines in biology has long suggested that great rewards could come from bridging the gap between synthetic molecular systems and the machines of the macroscopic world. In the last two decades, it has proved possible to design synthetic molecular systems with architectures where triggered large amplitude positional changes of submolecular components occur. Perhaps the best way to appreciate the technological potential of controlled molecular-level motion is to recognize that nanomotors and molecular-level machines lie at the heart of every significant biological process. Over billions of years of evolution, nature has not repeatedly chosen this solution for performing complex tasks without good reason. When mankind learns how to build artificial structures that can control and exploit molecular level motion and interface their effects directly with other molecular-level substructures and the outside world, it will potentially impact on every aspect of functional molecule and materials design. An improved understanding of physics and biology will surely follow. The first steps on the long path to the invention of artificial molecular machines were arguably taken in 1827 when the Scottish botanist Robert Brown observed the haphazard motion of tiny particles under his microscope.1,2 The explanation for Brownian motion, that it is caused by bombardment of the particles by molecules as a consequence of the kinetic theory of matter, was later provided by Einstein, followed by experimental verification by Perrin.3,4 The random thermal motion of molecules and its implications for the laws of thermodynamics in turn inspired Gedankenexperiments (“thought experiments”) that explored the interplay (and apparent paradoxes) of Brownian motion and the Second Law of Thermodynamics. Richard Feynman’s famous 1959 lecture “There’s plenty of room at the bottom” outlined some of the promise that manmade molecular machines might hold.5,6 However, Feynman’s talk came at a time before chemists had the necessary synthetic and analytical tools to make molecular machines. While interest among synthetic chemists began to grow in the 1970s and 1980s, progress accelerated in the 1990s, particularly with the invention of methods to make mechanically interlocked molecular systems (catenanes and rotaxanes) and control and switch the relative positions of their components.7−24 Here, we review triggered large-amplitude motions in molecular structures and the changes in properties these can produce. We concentrate on conformational and configurational changes in wholly covalently bonded molecules and on catenanes and rotaxanes in which switching is brought about by various stimuli (light, electrochemistry, pH, heat, solvent polarity, cation or anion binding, allosteric effects, temperature, reversible covalent bond formation, etc.). Finally, we discuss the latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks, paving the way to applications and the realization of a new era of “molecular nanotechnology”. 1.1. The Language Used To Describe Molecular Machines Terminology needs to be properly and appropriately defined and these meanings used consistently to effectively convey scientific concepts. Nowhere is the need for accurate scientific language more apparent than in the field of molecular machines. Much of the terminology used to describe molecular-level machines has its origins in observations made by biologists and physicists, and their findings and descriptions have often been misinterpreted and misunderstood by chemists. In 2007 we formalized definitions of some common terms used in the field (e.g., “machine”, “switch”, “motor”, “ratchet”, etc.) so that chemists could use them in a manner consistent with the meanings understood by biologists and physicists who study molecular-level machines.14 The word “machine” implies a mechanical movement that accomplishes a useful task. This Review concentrates on systems where a stimulus triggers the controlled, relatively large amplitude (or directional) motion of one molecular or submolecular component relative to another that can potentially result in a net task being performed. Molecular machines can be further categorized into various classes such as “motors” and “switches” whose behavior differs significantly.14 For example, in a rotaxane-based “switch”, the change in position of a macrocycle on the thread of the rotaxane influences the system only as a function of state. Returning the components of a molecular switch to their original position undoes any work done, and so a switch cannot be used repetitively and progressively to do work. A “motor”, on the other hand, influences a system as a function of trajectory, meaning that when the components of a molecular motor return to their original positions, for example, after a 360° directional rotation, any work that has been done is not undone unless the motor is subsequently rotated by 360° in the reverse direction. This difference in behavior is significant; no “switch-based” molecular machine can be used to progressively perform work in the way that biological motors can, such as those from the kinesin, myosin, and dynein superfamilies, unless the switch is part of a larger ratchet mechanism.14

1,434 citations

Journal ArticleDOI
TL;DR: This review focuses on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators.
Abstract: In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping ...

1,395 citations

Journal ArticleDOI
TL;DR: This critical review of recent developments in supramolecular polymeric materials is addressed, which can respond to appropriate external stimuli at the fundamental level due to the existence of noncovalent interactions of the building blocks.
Abstract: Supramolecular materials, dynamic materials by nature, are defined as materials whose components are bridged via reversible connections and undergo spontaneous and continuous assembly/disassembly processes under specific conditions. On account of the dynamic and reversible nature of noncovalent interactions, supramolecular polymers have the ability to adapt to their environment and possess a wide range of intriguing properties, such as degradability, shape-memory, and self-healing, making them unique candidates for supramolecular materials. In this critical review, we address recent developments in supramolecular polymeric materials, which can respond to appropriate external stimuli at the fundamental level due to the existence of noncovalent interactions of the building blocks.

1,343 citations