scispace - formally typeset
Search or ask a question
Author

Masamichi Takami

Bio: Masamichi Takami is an academic researcher from Showa University. The author has contributed to research in topics: Osteoclast & RANKL. The author has an hindex of 31, co-authored 103 publications receiving 4978 citations. Previous affiliations of Masamichi Takami include Nippon Steel & Tokyo Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system.
Abstract: Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases.

1,224 citations

Journal ArticleDOI
TL;DR: Surprisingly, it is shown that hematopoietic precursors from TRANCE-, RANK-, or TRAF6-null mice can become osteoclasts in vitro when they are stimulated with TNF-α in the presence of cofactors such as TGF-β.
Abstract: Osteoclasts are derived from myeloid lineage cells, and their differentiation is supported by various osteotropic factors, including the tumor necrosis factor (TNF) family member TNF-related activation-induced cytokine (TRANCE). Genetic deletion of TRANCE or its receptor, receptor activator of nuclear factorB (RANK), results in severely osteopetrotic mice with no osteoclasts in their bones. TNF receptor-associated factor (TRAF) 6 is a key signaling adaptor for RANK, and its deficiency leads to similar osteopetrosis. Hence, the current paradigm holds that TRANCE-RANK interaction and subsequent signaling via TRAF6 are essential for the generation of functional osteoclasts. Surprisingly, we show that hematopoietic precursors from TRANCE-, RANK-, or TRAF6-null mice can become osteoclasts in vitro when they are stimulated with TNF- � in the presence of cofactors such as TGF- � . We provide direct evidence against the current paradigm that the TRANCE- RANK-TRAF6 pathway is essential for osteoclast differentiation and suggest the potential existence of alternative routes for osteoclast differentiation.

349 citations

Journal ArticleDOI
TL;DR: It is reported that interferon regulatory factor-8 (IRF-8), a transcription factor expressed in immune cells, is a key regulatory molecule for osteoclastogenesis and suggested a model where downregulation of inhibitory factors such as IRf-8 contributes to RANKL-mediated osteoclineogenesis.
Abstract: Bone metabolism results from a balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases such as periodontitis and rheumatoid arthritis are characterized by increased bone destruction due to enhanced osteoclastogenesis. Here we report that interferon regulatory factor-8 (IRF-8), a transcription factor expressed in immune cells, is a key regulatory molecule for osteoclastogenesis. IRF-8 expression in osteoclast precursors was downregulated during the initial phase of osteoclast differentiation induced by receptor activator of nuclear factor-kappaB ligand (RANKL), which is encoded by the Tnfsf11 gene. Mice deficient in Irf8 showed severe osteoporosis, owing to increased numbers of osteoclasts, and also showed enhanced bone destruction after lipopolysaccharide (LPS) administration. Irf8-/- osteoclast precursors underwent increased osteoclastogenesis in response to RANKL and tumor necrosis factor-alpha (TNF-alpha). IRF-8 suppressed osteoclastogenesis by inhibiting the function and expression of nuclear factor of activated T cells c1 (NFATc1). Our results show that IRF-8 inhibits osteoclast formation under physiological and pathological conditions and suggest a model where downregulation of inhibitory factors such as IRF-8 contributes to RANKL-mediated osteoclastogenesis.

253 citations

Journal ArticleDOI
TL;DR: The identification and characterization of OC-associated receptor (OSCAR), a novel member of the leukocyte receptor complex (LRC)-encoded family expressed specifically in OCs are reported, suggesting that LRC-encoded genes may have evolved to regulate the physiology of cells beyond those of the immune system.
Abstract: Osteoclasts (OCs) are multinucleated cells that resorb bone and are essential for bone homeostasis. They develop from hematopoietic cells of the myelomonocytic lineage. OC formation requires cell-to-cell interactions with osteoblasts and can be achieved by coculturing bone marrow precursor cells with osteoblasts/stromal cells. Two of the key factors mediating the osteoblast-induced osteoclastogenesis are macrophage–colony stimulating factor (M-CSF) and the tumor necrosis factor (TNF) family member TNF–related activation-induced cytokine (TRANCE) that are produced by osteoblasts/stromal cells in response to various bone resorbing hormones. In addition, other factors produced by osteoblasts/stromal cells further influence osteoclastogenesis. Here we report the identification and characterization of OC-associated receptor (OSCAR), a novel member of the leukocyte receptor complex (LRC)-encoded family expressed specifically in OCs. Genes in the LRC produce immunoglobulin (Ig)-like surface receptors and play critical roles in the regulation of both innate and adaptive immune responses. Different from the previously characterized members of the LRC complex, OSCAR expression is detected specifically in preosteoclasts or mature OCs. Its putative–ligand (OSCAR-L) is expressed primarily in osteoblasts/stromal cells. Moreover, addition of a soluble form of OSCAR in coculture with osteoblasts inhibits the formation of OCs from bone marrow precursor cells in the presence of bone-resorbing factors, indicating that OSCAR may be an important bone-specific regulator of OC differentiation. In addition, this study suggests that LRC-encoded genes may have evolved to regulate the physiology of cells beyond those of the immune system.

248 citations

Journal ArticleDOI
TL;DR: This article showed that TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine.
Abstract: Osteoclasts, the cells capable of resorbing bone, are derived from hemopoietic precursor cells of monocyte-macrophage lineage. The same precursor cells can also give rise to macrophages and dendritic cells, which are essential for proper immune responses to various pathogens. Immune responses to microbial pathogens are often triggered because various microbial components induce the maturation and activation of immunoregulatory cells such as macrophages or dendritic cells by stimulating Toll-like receptors (TLRs). Since osteoclasts arise from the same precursors as macrophages, we tested whether TLRs play any role during osteoclast differentiation. We showed here that osteoclast precursors prepared from mouse bone marrow cells expressed all known murine TLRs (TLR1-TLR9). Moreover, various TLR ligands (e.g., peptidoglycan, poly(I:C) dsRNA, LPS, and CpG motif of unmethylated DNA, which act as ligands for TLR2, 3, 4, and 9, respectively) induced NF-kappa B activation and up-regulated TNF-alpha production in osteoclast precursor cells. Unexpectedly, however, TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine. Rather, TLR stimulation maintained the phagocytic activity of osteoclast precursors in the presence of osteoclastogenic stimuli M-CSF and TNF-related activation-induced cytokine. Taken together, these results suggest that TLR stimulation of osteoclast precursors inhibits their differentiation into noninflammatory mature osteoclasts during microbial infection. This process favors immune responses and may be critical to prevent pathogenic effects of microbial invasion on bone.

218 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
TL;DR: This review comprehensively covers literature reports which have investigated specifically the effect of dissolution products of silicate bioactive glasses and glass-ceramics in relation to osteogenesis and angiogenesis and focuses on the ion release kinetics of the materials and the specific effect of the released ionic dissolution products on human cell behaviour.

2,056 citations

Journal ArticleDOI
TL;DR: The two systems should be understood to be integrated and operating in the context of the 'osteoimmune' system, a heuristic concept that provides not only a framework for obtaining new insights by basic research, but also a scientific basis for the discovery of novel treatments for diseases related to both systems.
Abstract: Osteoimmunology is an interdisciplinary research field focused on the molecular understanding of the interplay between the immune and skeletal systems. Although osteoimmunology started with the study of the immune regulation of osteoclasts, its scope has been extended to encompass a wide range of molecular and cellular interactions, including those between osteoblasts and osteoclasts, lymphocytes and osteoclasts, and osteoblasts and haematopoietic cells. Therefore, the two systems should be understood to be integrated and operating in the context of the 'osteoimmune' system, a heuristic concept that provides not only a framework for obtaining new insights by basic research, but also a scientific basis for the discovery of novel treatments for diseases related to both systems.

1,520 citations

Journal ArticleDOI
TL;DR: The current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling is reviewed to show that the relative concentration of RankL and OPG in bone is a major determinant of bone mass and strength.

1,414 citations

Journal ArticleDOI
TL;DR: Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation.
Abstract: Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.

1,308 citations