scispace - formally typeset
Search or ask a question
Author

Masamitsu Hayashi

Other affiliations: Tohoku University, Stanford University, IBM  ...read more
Bio: Masamitsu Hayashi is an academic researcher from University of Tokyo. The author has contributed to research in topics: Spin Hall effect & Magnetization. The author has an hindex of 37, co-authored 142 publications receiving 9988 citations. Previous affiliations of Masamitsu Hayashi include Tohoku University & Stanford University.


Papers
More filters
Journal ArticleDOI
11 Apr 2008-Science
TL;DR: The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip and is an example of the move toward innately three-dimensional microelectronic devices.
Abstract: Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of ∼10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.

4,052 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructures and show that the effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses.
Abstract: Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

736 citations

Journal ArticleDOI
Masamitsu Hayashi1, Luc Thomas1, Rai Moriya1, Charles T. Rettner1, Stuart S. P. Parkin1 
11 Apr 2008-Science
TL;DR: Using permalloy nanowires, the successive creation, motion, and detection of domain walls are achieved by using sequences of properly timed, nanosecond-long, spin-polarized current pulses.
Abstract: The controlled motion of a series of domain walls along magnetic nanowires using spin-polarized current pulses is the essential ingredient of the proposed magnetic racetrack memory, a new class of potential non-volatile storage-class memories. Using permalloy nanowires, we achieved the successive creation, motion, and detection of domain walls by using sequences of properly timed, nanosecond-long, spin-polarized current pulses. The cycle time for the writing and shifting of the domain walls was a few tens of nanoseconds. Our results illustrate the basic concept of a magnetic shift register that relies on the phenomenon of spin-momentum transfer to move series of closely spaced domain walls.

665 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived an analytical formula for the harmonic Hall voltages to evaluate the effective field for both out-of-plane and in-plane magnetized systems, and the results illustrate the versatility of harmonic Hall voltage measurement for studying current induced torques in magnetic heterostructures.
Abstract: Solid understanding of current induced torques is a key to the development of current and voltage controlled magnetization dynamics in ultrathin magnetic heterostructures. To evaluate the size and direction of such torques, or effective fields, a number of methods have been employed. Here, we examine the adiabatic (low-frequency) harmonic Hall voltage measurement that has been used to study the effective field. We derive an analytical formula for the harmonic Hall voltages to evaluate the effective field for both out of plane and in-plane magnetized systems. The formula agrees with numerical calculations based on a macrospin model. Two different in-plane magnetized films, Pt|CoFeB|MgO and CuIr|CoFeB|MgO are studied using the formula developed. The effective field obtained for the latter system shows relatively good agreement with that estimated using spin torque switching phase diagram measurements reported previously. Our results illustrate the versatile applicability of harmonic Hall voltage measurement for studying current induced torques in magnetic heterostructures.

425 citations

Journal ArticleDOI
14 Sep 2006-Nature
TL;DR: It is found that the probability of dislodging a domain wall, confined to a pinning site in a permalloy nanowire, oscillates with the length of the current pulse, with a period of just a few nanoseconds.
Abstract: Several decades ago computers used devices called magnetic bubble memories, in which information was stored in small magnetized areas defined by domain walls. The domain walls, where the magnetization changes its direction, were moved by magnetic fields. This otherwise attractive technology had problems with reliability and scaling and gradually fell out of favour. Today an entirely new way of moving domain walls, using short pulses of electrical current, could make bubble memory devices feasible at the nanoscale. Thomas et al. use this technique to move domain walls in ferromagnetic wires on very short timescales, by applying nanosecond-long pulses. They also observe an intriguing 'boomerang' effect, where the domain walls are driven out of their confining potential, in the opposite direction to the current pulse. Experiments show that domain walls in ferromagnetic wires can be moved on very short timescales, by applying nanosecond-long pulses, and also detail a so-called 'boomerang' effect, where the domain walls are driven out of their confining potential, in the opposite direction of the current pulse. Magnetic domain walls, in which the magnetization direction varies continuously from one direction to another, have long been objects of considerable interest1. New concepts for devices based on such domain walls are made possible by the direct manipulation of the walls using spin-polarized electrical current2,3 through the phenomenon of spin momentum transfer4,5. Most experiments to date have considered the current-driven motion of domain walls under quasi-static conditions6,7,8,9,10,11,12, whereas for technological applications, the walls must be moved on much shorter timescales. Here we show that the motion of domain walls under nanosecond-long current pulses is surprisingly sensitive to the pulse length. In particular, we find that the probability of dislodging a domain wall, confined to a pinning site in a permalloy nanowire, oscillates with the length of the current pulse, with a period of just a few nanoseconds. Using an analytical model13,14,15,16,17 and micromagnetic simulations, we show that this behaviour is connected to a current-induced oscillatory motion of the domain wall. The period is determined by the wall's mass18 and the slope of the confining potential. When the current is turned off during phases of the domain wall motion when it has enough momentum, the domain wall is driven out of the confining potential in the opposite direction to the flow of spin angular momentum. This dynamic amplification effect could be exploited in magnetic nanodevices based on domain wall motion.

397 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
11 Apr 2008-Science
TL;DR: The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip and is an example of the move toward innately three-dimensional microelectronic devices.
Abstract: Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of ∼10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.

4,052 citations

Journal ArticleDOI
TL;DR: The authors are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials, allowing faster, low-energy operations: spin electronics is on its way.
Abstract: Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

2,191 citations

Journal ArticleDOI
TL;DR: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents as discussed by the authors and the associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not.
Abstract: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents. The associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not. This review provides a theoretical and experimental treatment of this subfield of spintronics, beginning with distinct microscopic mechanisms seen in ferromagnets and concluding with a discussion of optical-, transport-, and magnetization-dynamics-based experiments closely linked to the microscopic and phenomenological theories presented.

2,178 citations