scispace - formally typeset
Search or ask a question
Author

Masanori Kanematsu

Bio: Masanori Kanematsu is an academic researcher from Kaneka Corporation. The author has contributed to research in topics: Solar cell & Silicon. The author has an hindex of 4, co-authored 8 publications receiving 1783 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a silicon heterojunction with interdigitated back contacts was presented, achieving an efficiency of 26.3% and a detailed loss analysis to guide further developments.
Abstract: The efficiency of silicon solar cells has a large influence on the cost of most photovoltaics panels. Here, researchers from Kaneka present a silicon heterojunction with interdigitated back contacts reaching an efficiency of 26.3% and provide a detailed loss analysis to guide further developments.

2,052 citations

Journal ArticleDOI
TL;DR: In this paper, a heterojunction interdigitated back contact solar cell with conversion efficiency of 26.6% was developed, which was independently confirmed by Fraunhofer Institute for Solar Energysystem Callab.

394 citations

Patent
25 Nov 2013
TL;DR: In this article, a self-assembled monolayer is formed on a region on the transparent electrode layer, which is not provided with the first electroconductive layer, and a plating solution is brought into contact with each other.
Abstract: In a solar cell, a collecting electrode is provided on a transparent electrode of a photoelectric conversion section having the transparent electrode on the outermost surface on one main surface side. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side. Preferably, a self-assembled monolayer is formed on a region on the transparent electrode layer, which is not provided with the first electroconductive layer. A method for manufacturing the solar cell includes: forming a first electroconductive layer on a transparent electrode layer; forming a self-assembled monolayer on a region on the transparent electrode layer, which is not provided with the first electroconductive layer; and bringing the first electroconductive layer and a plating solution into contact with each other to form the second electroconductive layer by a plating method, in this order.

8 citations

Patent
01 Apr 2014
TL;DR: In this paper, the authors proposed a method for manufacturing a crystalline silicon-based solar cell having a photoelectric conversion section, which includes a siliconbased layer of an opposite conductivity-type on the first principal surface side of a crystal silicon substrate of a first conductivity type, and a collecting electrode formed by an electroplating method on the second principal surface of the photo electric conversion section.
Abstract: A method for manufacturing a crystalline silicon-based solar cell having a photoelectric conversion section includes a silicon-based layer of an opposite conductivity-type on a first principal surface side of a crystalline silicon substrate of a first conductivity-type, and a collecting electrode formed by an electroplating method on a first principal surface of the photoelectric conversion section. By applying laser light from a first or second principal surface side of the photoelectric conversion section, an insulation-processed region his formed where a short-circuit between the first principal surface and a second principal surface of the photoelectric conversion section is eliminated. On the collecting electrode and/or the insulation-processed region, a protecting layer s formed for preventing diffusion of a metal contained in the collecting electrode into the substrate. After the protecting layer is formed, the insulation-processed region is heated to eliminate leakage between the substrate and the silicon-based layer.

7 citations

Journal ArticleDOI
TL;DR: In this paper , a certified 28.3% efficient perovskite-silicon tandem (PST) solar cell with a mixed self-assembled monolayer (SAM) containing carbazole cores with H-ligands (2PACz) and methoxyligands, was reported.
Abstract: A certified 28.3% efficient monolithic perovskite-silicon tandem (PST) solar cell with a mixed self-assembled monolayer (SAM) containing carbazole cores with H-ligands (2PACz) and methoxy-ligands (MeO-2PACz) is reported. Our analysis revealed that there existed uncovered areas of MeO-2PACz on indium tin oxide, which would be caused by the steric effect, and they were filled with 2PACz in the mixed SAM, leading to the improvement of fill factors in the PST cells. This result was explained by the passivation qualities as hole transport layers and the local interaction between methoxy ligands and perovskite materials.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Abstract: In recent years, the power conversion efficiency of perovskite solar cells has increased to reach over 20%. Finding an effective means of defect passivation is thought to be a promising route for bringing further increases in the power conversion efficiency and the open-circuit voltage (VOC) of perovskite solar cells. Here, we report the use of an organic halide salt phenethylammonium iodide (PEAI) on HC(NH2)2–CH3NH3 mixed perovskite films for surface defect passivation. We find that PEAI can form on the perovskite surface and results in higher-efficiency cells by reducing the defects and suppressing non-radiative recombination. As a result, planar perovskite solar cells with a certificated efficiency of 23.32% (quasi-steady state) are obtained. In addition, a VOC as high as 1.18 V is achieved at the absorption threshold of 1.53 eV, which is 94.4% of the Shockley–Queisser limit VOC (1.25 V). Planar perovskite solar cells that have been passivated using the organic halide salt phenethylammonium iodide are shown to have suppressed non-radiative recombination and operate with a certified power conversion efficiency of 23.3%.

3,064 citations

Journal ArticleDOI
14 Sep 2018-Science
TL;DR: In this article, a semi-empirical model analysis and using the tandem cell strategy to overcome the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption was performed.
Abstract: Although organic photovoltaic (OPV) cells have many advantages, their performance still lags far behind that of other photovoltaic platforms. A fundamental reason for their low performance is the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a two-terminal monolithic solution-processed tandem OPV is achieved.

2,165 citations

Journal ArticleDOI
10 Nov 2017-Science
TL;DR: Because photocurrents are near the theoretical maximum, the focus is on efforts to increase open-circuit voltage by means of improving charge-selective contacts and charge carrier lifetimes in perovskites via processes such as ion tailoring.
Abstract: The efficiencies of perovskite solar cells have gone from single digits to a certified 22.1% in a few years' time. At this stage of their development, the key issues concern how to achieve further improvements in efficiency and long-term stability. We review recent developments in the quest to improve the current state of the art. Because photocurrents are near the theoretical maximum, our focus is on efforts to increase open-circuit voltage by means of improving charge-selective contacts and charge carrier lifetimes in perovskites via processes such as ion tailoring. The challenges associated with long-term perovskite solar cell device stability include the role of testing protocols, ionic movement affecting performance metrics over extended periods of time, and determination of the best ways to counteract degradation mechanisms.

1,371 citations

Journal ArticleDOI
TL;DR: An optimized two-step deposition process allows the formation of uniform layers of metal halide perovskites on textured silicon layers, enabling tandem silicon/perovskite solar cells with improved optical design and efficiency.
Abstract: Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm−2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

990 citations