scispace - formally typeset
Search or ask a question
Author

Masaomi Yamamura

Bio: Masaomi Yamamura is an academic researcher from Kyoto University. The author has contributed to research in topics: Lignin & Tricin. The author has an hindex of 16, co-authored 42 publications receiving 631 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The tricin-deficient fnsII mutant was analyzed further and revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.
Abstract: Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3′,5′-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.

80 citations

Journal ArticleDOI
18 Apr 2017-Planta
TL;DR: Manipulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization.
Abstract: Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.

67 citations

Journal ArticleDOI
TL;DR: In this article, the lignocellulose properties of sugarcane bagasse with a view to its application to produce fermentable sugars were comparatively analyzed before and after alkaline, hydrothermal, and dilute sulfuric acid pretreatments.

53 citations

Journal ArticleDOI
TL;DR: The data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking.
Abstract: p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.

52 citations

Journal ArticleDOI
TL;DR: This microscale protocol showed higher yields of thioacidolysis products than the conventional protocol and was a bottleneck in the characterization of lignins in a large number of samples such as transgenic lines.
Abstract: ioacidolysis is a method to detect the β-O-4 substructures of lignin, and has been employed as a diagnostic test for the presence of lignin. However, the conventional thioacidolysis protocol is low-throughput and is a bottleneck in the characterization of lignins in a large number of samples such as transgenic lines. Recently, a rapid analysis protocol for thioacidolysis was reported. In this study, we modi ed mainly the work-up process. Our microscale protocol showed higher yields of thioacidolysis products than the conventional protocol.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is hoped this review will give an in-depth understanding of the important roles of lignin biosynthesis in various plants’ biological processes and provide a theoretical basis for the genetic improvement of lIGNin content and composition in energy plants and crops.
Abstract: Lignin is one of the main components of plant cell wall and it is a natural phenolic polymer with high molecular weight, complex composition and structure. Lignin biosynthesis extensively contributes to plant growth, tissue/organ development, lodging resistance and the responses to a variety of biotic and abiotic stresses. In the present review, we systematically introduce the biosynthesis of lignin and its regulation by genetic modification and summarize the main biological functions of lignin in plants and their applications. We hope this review will give an in-depth understanding of the important roles of lignin biosynthesis in various plants’ biological processes and provide a theoretical basis for the genetic improvement of lignin content and composition in energy plants and crops.

637 citations

Journal ArticleDOI
01 Jul 1978-Nature
TL;DR: Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems as discussed by the authors is an application of Fourier transform infrared spectroscopy for chemical systems. But it is not suitable for biomedical applications.
Abstract: Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems Vol 1 Edited by J R Ferraro and L J Basile Pp 311 (Academic: New York, San Francisco and London, 1978) $25; £1625

613 citations

Journal ArticleDOI
TL;DR: This protocol describes procedures for the preparation and extraction of a biological plant tissue, and presents data that demonstrate the utility of this new NMR whole cell wall characterization procedure with a variety of degradative methods traditionally used for cell wall compositional analysis.
Abstract: Recent advances in nuclear magnetic resonance (NMR) technology have made it possible to rapidly screen plant material and discern whole cell wall information without the need to deconstruct and fractionate the plant cell wall. This approach can be used to improve our understanding of the biology of cell wall structure and biosynthesis, and as a tool to select plant material for the most appropriate industrial applications. This is particularly true in an era when renewable materials are vital to the emerging bio-based economies. This protocol describes procedures for (i) the preparation and extraction of a biological plant tissue, (ii) solubilization strategies for plant material of varying composition and (iii) 2D NMR acquisition (for typically 15 min–5 h) and integration methods used to elucidate lignin subunit composition and lignin interunit linkage distribution, as well as cell wall polysaccharide profiling. Furthermore, we present data that demonstrate the utility of this new NMR whole cell wall characterization procedure with a variety of degradative methods traditionally used for cell wall compositional analysis.

535 citations

Journal ArticleDOI
TL;DR: Upon perturbation of the phenylpropanoid pathway, pathway intermediates may successfully incorporate into the lignin polymer, thereby affecting its physicochemical properties, or may remain soluble as such or as derivatized molecules that might interfere with physiological processes.

340 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a set of guidelines for analysing critical data from lignin-first approaches, including feedstock analysis and process parameters, with the ambition of uniting the lignIN-first research community around a common set of reportable metrics, including fractionation efficiency, product yields, solvent mass balances, catalyst efficiency, and requirements for additional reagents such as reducing, oxidising, or capping agents.
Abstract: The valorisation of the plant biopolymer lignin is now recognised as essential to enabling the economic viability of the lignocellulosic biorefining industry. In this context, the “lignin-first” biorefining approach, in which lignin valorisation is considered in the design phase, has demonstrated the fullest utilisation of lignocellulose. We define lignin-first methods as active stabilisation approaches that solubilise lignin from native lignocellulosic biomass while avoiding condensation reactions that lead to more recalcitrant lignin polymers. This active stabilisation can be accomplished by solvolysis and catalytic conversion of reactive intermediates to stable products or by protection-group chemistry of lignin oligomers or reactive monomers. Across the growing body of literature in this field, there are disparate approaches to report and analyse the results from lignin-first approaches, thus making quantitative comparisons between studies challenging. To that end, we present herein a set of guidelines for analysing critical data from lignin-first approaches, including feedstock analysis and process parameters, with the ambition of uniting the lignin-first research community around a common set of reportable metrics. These guidelines comprise standards and best practices or minimum requirements for feedstock analysis, stressing reporting of the fractionation efficiency, product yields, solvent mass balances, catalyst efficiency, and the requirements for additional reagents such as reducing, oxidising, or capping agents. Our goal is to establish best practices for the research community at large primarily to enable direct comparisons between studies from different laboratories. The use of these guidelines will be helpful for the newcomers to this field and pivotal for further progress in this exciting research area.

320 citations