scispace - formally typeset
Search or ask a question
Author

Masashi Miyano

Bio: Masashi Miyano is an academic researcher from Aoyama Gakuin University. The author has contributed to research in topics: G protein-coupled receptor & Thermus thermophilus. The author has an hindex of 5, co-authored 15 publications receiving 5322 citations.

Papers
More filters
Journal ArticleDOI
04 Aug 2000-Science
TL;DR: This article determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution and found that the highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the sevenhelix transmembrane motif.
Abstract: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.

5,357 citations

Journal ArticleDOI
TL;DR: The crystal structure of the leukotriene B4 (LTB4) receptor BLT1 bound with BIIL260 is determined, and the unprecedented inverse-agonist mechanism by the benzamidine moiety will enable the rational development of inverse agonists specific for each GPCR.
Abstract: Most G-protein-coupled receptors (GPCRs) are stabilized in common in the inactive state by the formation of the sodium ion-centered water cluster with the conserved Asp2.50 inside the seven-transmembrane domain. We determined the crystal structure of the leukotriene B4 (LTB4) receptor BLT1 bound with BIIL260, a chemical bearing a benzamidine moiety. Surprisingly, the amidine group occupies the sodium ion and water locations, interacts with D662.50, and mimics the entire sodium ion-centered water cluster. Thus, BLT1 is fixed in the inactive state, and the transmembrane helices cannot change their conformations to form the active state. Moreover, the benzamidine molecule alone serves as a negative allosteric modulator for BLT1. As the residues involved in the benzamidine binding are widely conserved among GPCRs, the unprecedented inverse-agonist mechanism by the benzamidine moiety could be adapted to other GPCRs. Consequently, the present structure will enable the rational development of inverse agonists specific for each GPCR.

70 citations

Journal ArticleDOI
TL;DR: The complex CHP2-NHE1 (amino acids 503-545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant to understand the regulatory mechanism of NHE1 byCHP2.
Abstract: Calcineurin homologous protein (CHP) is a Ca2+-binding protein that directly interacts with and regulates the activity of all plasma-membrane Na+/H+-exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 A and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 A.

10 citations

Journal ArticleDOI
TL;DR: Dodecyl-β-d-selenomaltoside in a leukotriene C4 synthase crystal exhibited sufficient anomalous diffraction for multiwavelength anomalousdiffraction phasing.
Abstract: Dodecyl-β-d-selenomaltoside (SeDDM) is a seleno-detergent with a β-glycosidic seleno-ether in place of the ether moiety in dodecyl-β-d-maltoside. Seleno-detergents are candidates for heavy-atom agents in experimental phasing of membrane proteins in protein crystallography. Crystals of a nuclear membrane-embedded enzyme, leukotriene C4 synthase (LTC4S), in complex with SeDDM were prepared and a multiwavelength anomalous diffraction (MAD) experiment was performed. The SeDDM in the LTC4S crystal exhibited sufficient anomalous diffraction for determination of the structure using MAD phasing.

8 citations


Cited by
More filters
Journal ArticleDOI
23 Nov 2007-Science
TL;DR: Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopin as a template model for this large receptor family.
Abstract: Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human β2-adrenergic receptor–T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein–coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.

3,065 citations

Journal ArticleDOI
TL;DR: This study represents the first overall map of the GPCR sequences in a single mammalian genome and shows several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor.
Abstract: The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.

2,677 citations

Journal Article
TL;DR: Experiments with receptor antagonists and mice with targeted disruption of adenosine A(1), A(2A), and A(3) expression reveal roles for these receptors under physiological and particularly pathophysiological conditions.
Abstract: Four adenosine receptors have been cloned and characterized from several mammalian species. The receptors are named adenosine A(1), A(2A), A(2B), and A(3). The A(2A) and A(2B) receptors preferably interact with members of the G(s) family of G proteins and the A(1) and A(3) receptors with G(i/o) proteins. However, other G protein interactions have also been described. Adenosine is the preferred endogenous agonist at all these receptors, but inosine can also activate the A(3) receptor. The levels of adenosine seen under basal conditions are sufficient to cause some activation of all the receptors, at least where they are abundantly expressed. Adenosine levels during, e.g., ischemia can activate all receptors even when expressed in low abundance. Accordingly, experiments with receptor antagonists and mice with targeted disruption of adenosine A(1), A(2A), and A(3) expression reveal roles for these receptors under physiological and particularly pathophysiological conditions. There are pharmacological tools that can be used to classify A(1), A(2A), and A(3) receptors but few drugs that interact selectively with A(2B) receptors. Testable models of the interaction of these drugs with their receptors have been generated by site-directed mutagenesis and homology-based modelling. Both agonists and antagonists are being developed as potential drugs.

2,582 citations

Journal ArticleDOI
TL;DR: This paper showed that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain seven-transmembrane receptors' remarkably diverse biological actions.
Abstract: Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.

2,300 citations

Journal ArticleDOI
21 May 2009-Nature
TL;DR: G-protein-coupled receptors mediate most of the authors' physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases.
Abstract: G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein structure and biology. Great progress has been made over the past three decades in understanding diverse GPCRs, from pharmacology to functional characterization in vivo. Recent high-resolution structural studies have provided insights into the molecular mechanisms of GPCR activation and constitutive activity.

1,965 citations