scispace - formally typeset
Search or ask a question
Author

Masato Asanuma

Bio: Masato Asanuma is an academic researcher from Okayama University. The author has contributed to research in topics: Dopaminergic & Dopamine. The author has an hindex of 43, co-authored 237 publications receiving 6777 citations. Previous affiliations of Masato Asanuma include National Institute on Drug Abuse.


Papers
More filters
Journal ArticleDOI
TL;DR: The double-edged synthesizing and oxidizing functions of tyrosinase in the dopaminergic system suggest its potential for application in the synthesis of DA, instead of TH in the degeneration of dopamine neurons, and in the normalization of abnormal DA turnover in long-term L-DOPA-treated Parkinson's disease patients.
Abstract: Dopamine (DA)- or L-dihydroxyphenylalanine-(L-DOPA-) induced neurotoxicity is thought to be involved not only in adverse reactions induced by long-term L-DOPA therapy but also in the pathogenesis of Parkinson's disease. Numerous in vitro and in vivo studies concerning DA- or L-DOPA-induced neurotoxicity have been reported in recent decades. The reactive oxygen or nitrogen species generated in the enzymatical oxidation or auto-oxidation of an excess amount of DA induce neuronal damage and/or apoptotic or non-apoptotic cell death; the DA-induced damage is prevented by various intrinsic and extrinsic antioxidants. DA and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells mainly due to the generation of highly reactive DA and DOPA quinones which are dopaminergic neuron-specific cytotoxic molecules. DA and DOPA quinones may irreversibly alter protein function through the formation of 5-cysteinyl-catechols on the proteins. For example, the formation of DA quinone-alpha-synuclein consequently increases cytotoxic protofibrils and the covalent modification of tyrosine hydroxylase by DA quinones. The melanin-synthetic enzyme tyrosinase in the brain may rapidly oxidize excess amounts of cytosolic DA and L-DOPA, thereby preventing slowly progressive cell damage by auto-oxidation of DA, thus maintainng DA levels. Since tyrosinase also possesses catecholamine-synthesizing activity in the absence of tyrosine hydroxylase (TH), the double-edged synthesizing and oxidizing functions of tyrosinase in the dopaminergic system suggest its potential for application in the synthesis of DA, instead of TH in the degeneration of dopaminergic neurons, and in the normalization of abnormal DA turnover in the long-term L-DOPA-treated Parkinson's disease patients.

473 citations

Journal ArticleDOI
TL;DR: This article primarily review recent studies on the pathogenicity of quinone formation, in addition to several neuroprotective approaches against dopaminequinone-induced dysfunction of dopaminergic neurons.
Abstract: Oxidative stress, including the reactive oxygen or nitrogen species generated in the enzymatical oxidationor auto-oxidation of an excess amount of dopamine, is thought to play an important role in dopaminergic neurotoxicity. Dopamine and its metabolites containing 2 hydroxyl residues exert cytotoxicityin dopaminergic neuronal cells, primarily due to the generation of highly reactive dopamine and DOPA quinones. Dopamine and DOPA quinones may irreversibly alter protein function through the formation of 5-cysteinyl-catechols on the proteins. Furthermore, the quinone formation is closely linked to other representative hypotheses such as mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system, in the pathogenesis of neurodegenerative diseases. Therefore, pathogenic effects of the dopamine quinone have recently focused on dopaminergicneuron-specific oxidative stress. In this article, we primarily review recent studies on the pathogenicity of quinone formation, in addition to several neuroprotective approaches against dopaminequinone-induced dysfunction of dopaminergic neurons.

180 citations

Journal ArticleDOI
TL;DR: The results suggest that the protective effects of the former four non‐steroidal anti‐inflammatory drugs against apoptosis might be mainly due to their direct nitric oxide radical scavenging activities in neuronal cells.
Abstract: Recently, it has been reported that inflammatory processes are associated with the pathophysiology of Alzheimer's disease and that treatment of non-steroidal anti-inflammatory drugs reduce the risk for Alzheimer's disease. In the present study, we examined nitric oxide radical quenching activity of non-steroidal anti-inflammatory drugs and steroidal drugs using our established direct in vitro nitric oxide radical detecting system by electron spin resonance spectrometry. The non-steroidal anti-inflammatory drugs, aspirin, mefenamic acid, indomethacin and ketoprofen directly and dose-dependently scavenged generated nitric oxide radicals. In experiments of nitric oxide radical donor, NOC18-induced neuronal damage, these four non-steroidal drugs significantly prevented the NOC18-induced reduction of cell viability and apoptotic nuclear changes in neuronal cells without affecting the induction of inducible nitric oxide synthase-like immunoreactivity. However, ibuprofen, naproxen or steroidal drugs, which had less or no scavenging effects in vitro, showed almost no protective effects against NOC18-induced cell toxicity. These results suggest that the protective effects of the former four non-steroidal anti-inflammatory drugs against apoptosis might be mainly due to their direct nitric oxide radical scavenging activities in neuronal cells. These direct NO. quenching activities represent novel effects of non-steroidal anti-inflammatory drugs. Our findings identified novel pharmacological mechanisms of these drugs to exert not only their anti-inflammatory, analgesic, antipyretic activities but also neuroprotective activities against neurodegeneration.

176 citations

Journal ArticleDOI
TL;DR: It is suggested that transcriptional up‐regulation of glutathione synthesis in glial cell appears to mediate brainglial cell resistance against oxidative stress, and that glial cells protect neurons via transcriptionalUp‐regulationof the antioxidant system.
Abstract: We examined the effects of oxidative stress on rat cultured mesencephalic neurons and glial cells Glial cells were more resistant to 6-hydroxydopamine (6-OHDA) and H 2 O 2 toxicity than neurons In glial cells, incubation with 6-OHDA and H 2 O 2 induced a significant increase in the expression of γ-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione synthesis) mRNA, which correlated well with increased TPA-response element (TRE)-binding activity Furthermore, a subsequent elevation in cellular total glutathione content was also observed In neurons, both agents decreased TRE-binding activity, and these cells failed to up-regulate the glutathione synthesis We also examined the mechanisms of the neuroprotective effects of glial cells using a glia conditioned medium Neurons maintained in glia conditioned medium up-regulated the level of TRE-binding activity, γ-glutamylcysteine synthetase mRNA expression, and total glutathione content in response to 6-OHDA or H 2 O 2 , and became more resistant to both agents than cells maintained in a normal medium Neurons maintained in normal medium failed to up-regulate the glutathione synthesis Our results suggest that transcriptional up-regulation of glutathione synthesis in glial cell appears to mediate brain glial cell resistance against oxidative stress, and that glial cells protect neurons via transcriptional up-regulation of the antioxidant system

173 citations

Journal ArticleDOI
TL;DR: Bromocriptine has a neuroprotective effect against neurotoxins such as 6-hydroxydopamine, probably due, in part, to its hydroxyl radical scavenging activity and inhibiting effect on dopamine turnover rate, which suggests that early introduction of bromOCriptine in the therapy of Parkinson's disease may be superior to treatment with L-DOPA alone.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-σB inhibition.
Abstract: The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.

4,110 citations

Journal ArticleDOI
22 Nov 1999-Oncogene
TL;DR: It is argued that NF-κB functions more generally as a central regulator of stress responses and pairing stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Abstract: Sixteen years have passed since the description of the nuclear factor-кB (NF-кB) as a regulator of к light-chain gene expression in murine B lymphocytes (Sen & Baltimore, 1986a) During that time, over 4,000 publications have appeared, characterizing the family of Rel/NF-кB transcription factors involved in the control of a large number of normal and pathological cellular processes The physiological functions of NF-кB proteins include immunological and inflammatory responses, developmental processes, cellular growth and modulating effects on apoptosis In addition, these factors are activated in a number of diseases, including cancer, arthritis, acute and chronic inflammatory states, asthma, as well as neurodegenerative and heart diseases

3,728 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: This protocol describes ISH of digoxigenin-labeled antisense RNA probes to whole-mount zebrafish embryos and uses conditions that favor specific hybridization to complementary mRNA sequences in the tissue(s) expressing the corresponding gene.
Abstract: The in situ hybridization (ISH) technique allows the sites of expression of particular genes to be detected. This protocol describes ISH of digoxigenin-labeled antisense RNA probes to whole-mount zebrafish embryos. In our method, PCR-amplified sequence of a gene of interest is used as a template for the synthesis of an antisense RNA probe, which is labeled with digoxigenin-linked nucleotides. Embryos are fixed and permeabilized before being soaked in the digoxigenin-labeled probe. We use conditions that favor specific hybridization to complementary mRNA sequences in the tissue(s) expressing the corresponding gene. After washing away excess probe, hybrids are detected by immunohistochemistry using an alkaline phosphatase-conjugated antibody against digoxigenin and a chromogenic substrate. The whole procedure takes only 3 days and, because ISH conditions are the same for each probe tested, allows high throughput analysis of zebrafish gene expression during embryogenesis.

2,323 citations

Journal ArticleDOI
TL;DR: The 4th International Conference on Concussion in Sport held in Zurich, November 2012 was attended by Paul McCrory, Willem H Meeuwisse, Mark Aubry, Jiří Dvořák, Ruben J Echemendia, Lars Engebretsen, Karen Johnston, Jeffrey S Kutcher, Martin Raftery, Allen Sills and Kathryn Schneider.

2,293 citations