scispace - formally typeset
Search or ask a question
Author

Masjuki Haji Hassan

Bio: Masjuki Haji Hassan is an academic researcher from University of Malaya. The author has contributed to research in topics: Biodiesel & Diesel fuel. The author has an hindex of 12, co-authored 20 publications receiving 1239 citations. Previous affiliations of Masjuki Haji Hassan include International Islamic University Malaysia.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, basic knowledge of thermoelectric materials and an overview of parameters that affect the figure of merit ZT are provided, as well as the prospects for the optimization and their applications are also discussed.
Abstract: Developing thermoelectric materials with superior performance means tailoring interrelated thermoelectric physical parameters – electrical conductivities, Seebeck coefficients, and thermal conductivities – for a crystalline system. High electrical conductivity, low thermal conductivity, and a high Seebeck coefficient are desirable for thermoelectric materials. Therefore, knowledge of the relation between electrical conductivity and thermal conductivity is essential to improve thermoelectric properties. In general, research in recent years has focused on developing thermoelectric structures and materials of high efficiency. The importance of this parameter is universally recognized; it is an established, ubiquitous, routinely used tool for material, device, equipment and process characterization both in the thermoelectric industry and in research. In this paper, basic knowledge of thermoelectric materials and an overview of parameters that affect the figure of merit ZT are provided. The prospects for the optimization of thermoelectric materials and their applications are also discussed.

663 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the latest developments and technologies on waste heat recovery of exhaust gas from internal combustion engines (ICE), including thermoelectric generators (TEG), organic Rankine cycle (ORC), six-stroke cycle IC engine and turbocharger technology.
Abstract: The focus of this study is to review the latest developments and technologies on waste heat recovery of exhaust gas from internal combustion engines (ICE). These include thermoelectric generators (TEG), organic Rankine cycle (ORC), six-stroke cycle IC engine and new developments on turbocharger technology. Furthermore, the study looked into the potential energy savings and performances of those technologies. The current worldwide trend of increasing energy demand in transportation sector are one of the many segments that is responsible for the growing share of fossil fuel usage and indirectly contribute to the release of harmful greenhouse gas (GHG) emissions. It is hoped that with the latest findings on exhaust heat recovery to increase the efficiency of ICEs, world energy demand on the depleting fossil fuel reserves would be reduced and hence the impact of global warming due to the GHG emissions would fade away.

349 citations

Journal ArticleDOI
TL;DR: In this paper, Artificial Neural Networks (ANN) and Ant Colony Optimization (ACO) were used to optimize the process variables for alkaline-catalyzed transesterification of CI40CP60 oil mixture.

171 citations

Journal ArticleDOI
TL;DR: In this article, the performance and exhaust emissions of a single-cylinder direct injection diesel engine fueled with Jatropa curcas-Ceiba pentandra biodiesel-diesel blends are investigated.

105 citations

Journal ArticleDOI
TL;DR: A comprehensive review was studied to discuss on the sustainability of palm cultivation and biodiesel, impact of palm industry and biod diesel policy in transportation sector and potential international collaboration between Malaysia and Colombia to improve their existing policies, strategies and blueprints related to the palm biodiesel industry, thus overcoming the challenges when dealing with global energy issue.
Abstract: Biodiesel is gaining prominence as a superior alternative source of energy to replace petroleum-based fuel in transportation. As of today, the biodiesel market continuous to rise up as the biofuel has been introduced to more than 60 countries worldwide. The aim of the present review is to highlight on the scenario of the biofuel implementation in transportation sector towards sustainable development in Colombia and Malaysia. Colombia serves as an ideal comparative case for Malaysia in terms of biodiesel development since the country is the main palm oil producer in Latin America region and the pioneer in bioethanol industry. The first section shows an overview on the biodiesel as an alternative fuel in transportation. The next section will focus on a comparative study between Malaysia and Colombia biodiesel sector in terms of energy supply, resource, production and consumption, standards, techno-economic cost and their biodiesel policies. A comprehensive review was studied to discuss on the sustainability of palm cultivation and biodiesel, impact of palm industry and biodiesel policy in transportation sector and potential international collaboration between Malaysia and Colombia to improve their existing policies, strategies and blueprints related to the palm biodiesel industry, thus overcoming the challenges when dealing with global energy issue.

63 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art of the energy sources, storage devices, power converters, low-level control energy management strategies and high supervisor control algorithms used in electric vehicles are reviewed.
Abstract: The issues of global warming and depletion of fossil fuels have paved opportunities to electric vehicle (EV). Moreover, the rapid development of power electronics technologies has even realized high energy-efficient vehicles. EV could be the alternative to decrease the global green house gases emission as the energy consumption in the world transportation is high. However, EV faces huge challenges in battery cost since one-third of the EV cost lies on battery. This paper reviews state-of-the-art of the energy sources, storage devices, power converters, low-level control energy management strategies and high supervisor control algorithms used in EV. The comparison on advantages and disadvantages of vehicle technology is highlighted. In addition, the standards and patterns of drive cycles for EV are also outlined. The advancement of power electronics and power processors has enabled sophisticated controls (low-level and high supervisory algorithms) to be implemented in EV to achieve optimum performance as well as the realization of fast-charging stations. The rapid growth of EV has led to the integration of alternative resources to the utility grid and hence smart grid control plays an important role in managing the demand. The awareness of environmental issue and fuel crisis has brought up the sales of EV worldwide.

1,077 citations

Journal ArticleDOI
TL;DR: In this paper, high-pressure methane adsorption isotherms are compared to compare gravimetric and volumetric capacities, isosteric heat and usable storage capacities.
Abstract: Metal–organic frameworks have received significant attention as a new class of adsorbents for natural gas storage; however, inconsistencies in reporting high-pressure adsorption data and a lack of comparative studies have made it challenging to evaluate both new and existing materials. Here, we briefly discuss high-pressure adsorption measurements and review efforts to develop metal–organic frameworks with high methane storage capacities. To illustrate the most important properties for evaluating adsorbents for natural gas storage and for designing a next generation of improved materials, six metal–organic frameworks and an activated carbon, with a range of surface areas, pore structures, and surface chemistries representative of the most promising adsorbents for methane storage, are evaluated in detail. High-pressure methane adsorption isotherms are used to compare gravimetric and volumetric capacities, isosteric heats of adsorption, and usable storage capacities. Additionally, the relative importance of increasing volumetric capacity, rather than gravimetric capacity, for extending the driving range of natural gas vehicles is highlighted. Other important systems-level factors, such as thermal management, mechanical properties, and the effects of impurities, are also considered, and potential materials synthesis contributions to improving performance in a complete adsorbed natural gas system are discussed.

981 citations

Proceedings Article
01 Jan 2009
TL;DR: This paper summarizes recent energy harvesting results and their power management circuits.
Abstract: More than a decade of research in the field of thermal, motion, vibration and electromagnetic radiation energy harvesting has yielded increasing power output and smaller embodiments. Power management circuits for rectification and DC-DC conversion are becoming able to efficiently convert the power from these energy harvesters. This paper summarizes recent energy harvesting results and their power management circuits.

711 citations

Journal ArticleDOI
TL;DR: In this paper, basic knowledge of thermoelectric materials and an overview of parameters that affect the figure of merit ZT are provided, as well as the prospects for the optimization and their applications are also discussed.
Abstract: Developing thermoelectric materials with superior performance means tailoring interrelated thermoelectric physical parameters – electrical conductivities, Seebeck coefficients, and thermal conductivities – for a crystalline system. High electrical conductivity, low thermal conductivity, and a high Seebeck coefficient are desirable for thermoelectric materials. Therefore, knowledge of the relation between electrical conductivity and thermal conductivity is essential to improve thermoelectric properties. In general, research in recent years has focused on developing thermoelectric structures and materials of high efficiency. The importance of this parameter is universally recognized; it is an established, ubiquitous, routinely used tool for material, device, equipment and process characterization both in the thermoelectric industry and in research. In this paper, basic knowledge of thermoelectric materials and an overview of parameters that affect the figure of merit ZT are provided. The prospects for the optimization of thermoelectric materials and their applications are also discussed.

663 citations