scispace - formally typeset
Search or ask a question
Author

Massimo Bassan

Bio: Massimo Bassan is an academic researcher from University of Rome Tor Vergata. The author has contributed to research in topics: Gravitational wave & Gravitational-wave observatory. The author has an hindex of 17, co-authored 88 publications receiving 1811 citations. Previous affiliations of Massimo Bassan include Istituto Nazionale di Fisica Nucleare.


Papers
More filters
Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Massimo Bassan5, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi6, N. Brandt7, M. Caleno1, L. Carbone6, Antonella Cavalleri8, A. Cesarini6, Giacomo Ciani6, G. Congedo6, A. M. Cruise9, Karsten Danzmann2, M. de Deus Silva1, R. De Rosa, M. Diaz-Aguilo10, L. Di Fiore, Ingo Diepholz2, G. Dixon9, Rita Dolesi6, N. Dunbar7, Luigi Ferraioli11, Valerio Ferroni6, Walter Fichter, E. D. Fitzsimons12, R. Flatscher7, M. Freschi1, A. F. García Marín2, C. García Marirrodriga1, R. Gerndt7, Lluis Gesa10, Ferran Gibert6, Domenico Giardini11, R. Giusteri6, F. Guzmán2, Aniello Grado13, Catia Grimani14, A. Grynagier, J. Grzymisch1, I. Harrison15, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, D. Hoyland9, Mauro Hueller6, Henri Inchauspe3, Oliver Jennrich1, Ph. Jetzer16, Ulrich Johann7, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow17, J. A. Lobo10, Ivan Lloro10, L. Liu6, J. P. López-Zaragoza10, R. Maarschalkerweerd15, Davor Mance11, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, S. Madden1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes15, L. Mendes1, A. Monsky2, Daniele Nicolodi6, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd17, Antoine Petiteau3, P. Pivato6, Eric Plagnol3, P. Prat3, U. Ragnit1, B. Rais3, Juan Ramos-Castro18, J. Reiche2, D. I. Robertson17, H. Rozemeijer1, F. Rivas10, G. Russano6, J Sanjuán10, P. Sarra, A. Schleicher7, D. Shaul4, Jacob Slutsky19, Carlos F. Sopuerta10, Ruggero Stanga20, F. Steier2, T. J. Sumner4, D. Texier1, James Ira Thorpe19, C. Trenkel7, Michael Tröbs2, H. B. Tu6, Daniele Vetrugno6, Stefano Vitale6, V Wand2, Gudrun Wanner2, H. Ward17, C. Warren7, Peter Wass4, D. Wealthy7, W. J. Weber6, L. Wissel2, A. Wittchen2, A. Zambotti6, C. Zanoni6, Tobias Ziegler7, Peter Zweifel11 
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Abstract: We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

523 citations

Journal ArticleDOI
TL;DR: The advanced interferometer network will herald a new era in observational astronomy, and there is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz to 10 kHz, with sensitivity a factor 10 better in amplitude as discussed by the authors.
Abstract: The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz to 10 kHz, with sensitivity a factor 10 better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.

441 citations

Journal ArticleDOI
TL;DR: The cryogenic resonant gravitational wave detector of the Rome group, named Explorer, is described and its long term operation with sensitivity for short bursts in the range of [ital h][congruent]7--10[times]10[sup [minus]19], and a new improved upper limit for the rate and strength of gravitational wave pulses is established.
Abstract: We describe the cryogenic resonant gravitational wave detector of the Rome group, named Explorer, and report on its long term operation with sensitivity for short bursts in the range $h\ensuremath{\simeq}7\ensuremath{-}10\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}19}$. Explorer has mass $M=2270$ kg and is equipped with a resonant capacitive transducer followed by a dc superconducting quantum interference device amplifier. It has been operated at $T\ensuremath{\simeq}2.6$ K in a cryostat cooled with superfluid helium. With a transducer voltage bias of 320 V ($E=6.15$ MV/m) the two resonant modes have frequencies of 904.7 and 921.3 Hz with coupled quality factors, respectively, of 0.77\ifmmode\times\else\texttimes\fi{}${10}^{6}$ and 1.0\ifmmode\times\else\texttimes\fi{}${10}^{6}$. The description of the experimental apparatus and of its calibration is followed by the analysis of the noise and the calculation of the expected sensitivity of the detector: $h\ensuremath{\simeq}8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}19}$ (under the assumption of bursts with duration of 1 ms). We then describe the data acquisition system and the techniques of data analysis, discussing the filtering algorithms. The last section reports the experimental results obtained during the operation of the detector from May 1990 to December 1991. During this period the data were recorded for more than two-thirds of the total time: we show the distributions of the data and the hourly averages of the sensitivity. The data taken from May 1991 to December 1991 have also been used to establish a new improved upper limit for the rate and strength of gravitational wave pulses; at $h=2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}17}$, for example, there are no more than 0.5 events/day as averaged over a period of 134 days.

142 citations

Journal ArticleDOI
TL;DR: In this article, the ultralow-temperature resonant-mass gravitational-wave detector NAUTILUS, operating at the Frascati INFN Laboratories, was reported to achieve a sensitivity sufficient to detect bursts of gravitational radiation from sources located in our Galaxy and in the local group.

121 citations

Journal ArticleDOI
TL;DR: The advanced interferometer network will herald a new era in observational astronomy, and there is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude as mentioned in this paper.
Abstract: The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.

67 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Abstract: This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania;...

1,270 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Journal ArticleDOI
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Abstract: One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

1,066 citations