scispace - formally typeset
Search or ask a question
Author

Massimo Bertozzi

Bio: Massimo Bertozzi is an academic researcher from University of Parma. The author has contributed to research in topics: Pedestrian detection & Object detection. The author has an hindex of 36, co-authored 94 publications receiving 5629 citations. Previous affiliations of Massimo Bertozzi include Information Technology University & Volkswagen.


Papers
More filters
Journal ArticleDOI
TL;DR: The generic obstacle and lane detection system (GOLD), a stereo vision-based hardware and software architecture to be used on moving vehicles to increment road safety, allows to detect both generic obstacles and the lane position in a structured environment at a rate of 10 Hz.
Abstract: This paper describes the generic obstacle and lane detection system (GOLD), a stereo vision-based hardware and software architecture to be used on moving vehicles to increment road safety. Based on a full-custom massively parallel hardware, it allows to detect both generic obstacles (without constraints on symmetry or shape) and the lane position in a structured environment (with painted lane markings) at a rate of 10 Hz. Thanks to a geometrical transform supported by a specific hardware module, the perspective effect is removed from both left and right stereo images; the left is used to detect lane markings with a series of morphological filters, while both remapped stereo images are used for the detection of free-space in front of the vehicle. The output of the processing is displayed on both an on-board monitor and a control-panel to give visual feedbacks to the driver. The system was tested on the mobile laboratory (MOB-LAB) experimental land vehicle, which was driven for more than 3000 km along extra-urban roads and freeways at speeds up to 80 km/h, and demonstrated its robustness with respect to shadows and changing illumination conditions, different road textures, and vehicle movement.

1,088 citations

Journal ArticleDOI
TL;DR: The most common approaches to the challenging task of Autonomous Road Guidance are surveyed, with the most promising experimental solutions and prototypes developed worldwide using AI techniques to perceive the environmental situation by means of artificial vision.

448 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: This paper surveys the most advanced approaches to (partial) customization of the road following task, using on-board systems based on artificial vision, and describes the functionalities of lane detection, obstacle detection and pedestrian detection.
Abstract: The last few decades have witnessed the birth and growth of a new sensibility to transportation efficiency. In particular the need for efficient and improved people and goods mobility has pushed researchers to address the problem of intelligent transportation systems. This paper surveys the most advanced approaches to (partial) customization of the road following task, using on-board systems based on artificial vision. The functionalities of lane detection, obstacle detection and pedestrian detection are described and classified, and their possible application in future road vehicles is discussed.

293 citations

Proceedings ArticleDOI
03 Oct 2000
TL;DR: This paper presents the method for detecting pedestrian recently implemented on the ARGO vehicle: the analysis of a monocular image delivers a first coarse detection, while a distance refinement is performed using the stereo vision technique.
Abstract: This paper presents the method for detecting pedestrian recently implemented on the ARGO vehicle. The perception of the environment is performed through the sole processing of images acquired from a vision system installed on board of the vehicle: the analysis of a monocular image delivers a first coarse detection, while a distance refinement is performed using the stereo vision technique.

271 citations

Book
22 Apr 1999
TL;DR: In this paper, the authors present the ARGO prototype vehicle, developed at the University of Parma in Italy and describes its equipment, setup, and performance, including cameras and processing systems.
Abstract: This book surveys the history of automatic vehicle guidance based on the processing of visual information, starting from the very first projects worldwide up to the latest developments. It also presents the ARGO prototype vehicle, developed at the University of Parma in Italy and describes its equipment, setup, and performance. ARGO has been equipped with cameras and processing systems to drive autonomously in real traffic conditions. The complete system has been tested on public roads during a tour in which ARGO drove itself along the Italian highway network for more than 2000 km. A detailed analysis of this trip is also included

192 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey on the development of D2ITS is provided, discussing the functionality of its key components and some deployment issues associated with D2 ITS Future research directions for the developed system are presented.
Abstract: For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.

1,336 citations

Journal ArticleDOI
TL;DR: A review of recent vision-based on-road vehicle detection systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems is presented.
Abstract: Developing on-board automotive driver assistance systems aiming to alert drivers about driving environments, and possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a critical step. This paper presents a review of recent vision-based on-road vehicle detection systems. Our focus is on systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems. First, we discuss the problem of on-road vehicle detection using optical sensors followed by a brief review of intelligent vehicle research worldwide. Then, we discuss active and passive sensors to set the stage for vision-based vehicle detection. Methods aiming to quickly hypothesize the location of vehicles in an image as well as to verify the hypothesized locations are reviewed next. Integrating detection with tracking is also reviewed to illustrate the benefits of exploiting temporal continuity for vehicle detection. Finally, we present a critical overview of the methods discussed, we assess their potential for future deployment, and we present directions for future research.

1,181 citations

Journal ArticleDOI
TL;DR: A review of motion planning techniques implemented in the intelligent vehicles literature, with a description of the technique used by research teams, their contributions in motion planning, and a comparison among these techniques is presented.
Abstract: Intelligent vehicles have increased their capabilities for highly and, even fully, automated driving under controlled environments. Scene information is received using onboard sensors and communication network systems, i.e., infrastructure and other vehicles. Considering the available information, different motion planning and control techniques have been implemented to autonomously driving on complex environments. The main goal is focused on executing strategies to improve safety, comfort, and energy optimization. However, research challenges such as navigation in urban dynamic environments with obstacle avoidance capabilities, i.e., vulnerable road users (VRU) and vehicles, and cooperative maneuvers among automated and semi-automated vehicles still need further efforts for a real environment implementation. This paper presents a review of motion planning techniques implemented in the intelligent vehicles literature. A description of the technique used by research teams, their contributions in motion planning, and a comparison among these techniques is also presented. Relevant works in the overtaking and obstacle avoidance maneuvers are presented, allowing the understanding of the gaps and challenges to be addressed in the next years. Finally, an overview of future research direction and applications is given.

1,162 citations

Journal ArticleDOI
TL;DR: The generic obstacle and lane detection system (GOLD), a stereo vision-based hardware and software architecture to be used on moving vehicles to increment road safety, allows to detect both generic obstacles and the lane position in a structured environment at a rate of 10 Hz.
Abstract: This paper describes the generic obstacle and lane detection system (GOLD), a stereo vision-based hardware and software architecture to be used on moving vehicles to increment road safety. Based on a full-custom massively parallel hardware, it allows to detect both generic obstacles (without constraints on symmetry or shape) and the lane position in a structured environment (with painted lane markings) at a rate of 10 Hz. Thanks to a geometrical transform supported by a specific hardware module, the perspective effect is removed from both left and right stereo images; the left is used to detect lane markings with a series of morphological filters, while both remapped stereo images are used for the detection of free-space in front of the vehicle. The output of the processing is displayed on both an on-board monitor and a control-panel to give visual feedbacks to the driver. The system was tested on the mobile laboratory (MOB-LAB) experimental land vehicle, which was driven for more than 3000 km along extra-urban roads and freeways at speeds up to 80 km/h, and demonstrated its robustness with respect to shadows and changing illumination conditions, different road textures, and vehicle movement.

1,088 citations

Journal ArticleDOI
TL;DR: A comparison of a wide variety of methods, pointing out the similarities and differences between methods as well as when and where various methods are most useful, is presented.
Abstract: Driver-assistance systems that monitor driver intent, warn drivers of lane departures, or assist in vehicle guidance are all being actively considered. It is therefore important to take a critical look at key aspects of these systems, one of which is lane-position tracking. It is for these driver-assistance objectives that motivate the development of the novel "video-based lane estimation and tracking" (VioLET) system. The system is designed using steerable filters for robust and accurate lane-marking detection. Steerable filters provide an efficient method for detecting circular-reflector markings, solid-line markings, and segmented-line markings under varying lighting and road conditions. They help in providing robustness to complex shadowing, lighting changes from overpasses and tunnels, and road-surface variations. They are efficient for lane-marking extraction because by computing only three separable convolutions, we can extract a wide variety of lane markings. Curvature detection is made more robust by incorporating both visual cues (lane markings and lane texture) and vehicle-state information. The experiment design and evaluation of the VioLET system is shown using multiple quantitative metrics over a wide variety of test conditions on a large test path using a unique instrumented vehicle. A justification for the choice of metrics based on a previous study with human-factors applications as well as extensive ground-truth testing from different times of day, road conditions, weather, and driving scenarios is also presented. In order to design the VioLET system, an up-to-date and comprehensive analysis of the current state of the art in lane-detection research was first performed. In doing so, a comparison of a wide variety of methods, pointing out the similarities and differences between methods as well as when and where various methods are most useful, is presented

1,056 citations