scispace - formally typeset
Search or ask a question
Author

Massimo D'Antonio

Bio: Massimo D'Antonio is an academic researcher from University of Naples Federico II. The author has contributed to research in topics: Caldera & Volcano. The author has an hindex of 34, co-authored 98 publications receiving 4044 citations. Previous affiliations of Massimo D'Antonio include Geological Society of America & National Institute of Geophysics and Volcanology.
Topics: Caldera, Volcano, Magma, Volcanic rock, Mafic


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed stratigraphical, structural, volcanological and 14 C (AMS) geochronological study devoted to the reconstruction of the volcanic and deformational history of the Campi Flegrei caldera was carried out.

451 citations

Journal ArticleDOI
TL;DR: In this article, geochronological, geochemical, and Sr-isotope data on volcanics erupted before the Campanian Ignimbrite (CI, 37 ka) and the Neapolitan Yellow Tuff (NYT, 12 ka) caldera-forming eruptions at Campi Flegrei (CF) have allowed us to investigate the behavior and temporal evolution of the Phlegraean magmatic system.

218 citations

Journal ArticleDOI
TL;DR: The Agnano-Monte Spina tephra (AMST) is the product of the highest-magnitude eruption in the Campi Flegrei caldera (CFc) during its last epoch of activity (4800-3800 years BP) as discussed by the authors.

209 citations

Journal ArticleDOI
TL;DR: In this article, the Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times, and a decrease of alkaline character in time and space (southward) is observed.
Abstract: The Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times. Although calc-alkaline, potassic and ultrapotassic volcanism overlaps in space and time, a decrease of alkaline character in time and space (southward) is observed. Alkaline ultrapotassic and potassic volcanic rocks are characterised by variable enrichment in K and incompatible elements, coupled with consistently high LILE/HFSE values, similar to those of calc-alkaline volcanic rocks from the nearby Aeolian arc. On the basis of mineralogy and major and trace element chemistry two different arrays can be recognised among primitive rocks; a silica saturated trend, which resulted in formation of leucite-free mafic rocks, and a silica undersaturated trend, charactrerised by leucite-bearing rocks. Initial 87Sr/86Sr and 143Nd/144Nd values of Italian ultrapotassic and potassic mafic rocks range from 0.70506 to 0.71672 and from 0.51173 to 0.51273, respectively. 206Pb/204Pb values range between 18.50 and 19.15, 207Pb/204Pb values range between 15.63 and 15.70, and 208Pb/204Pb values range between 38.35 and 39.20. The general eSr vs. eNd array, along with crustal lead isotopic values, clearly indicates that a continental crustal component has played an important role in the genesis of these magmas. The main question is where this continental crustal component has been acquired by the magmas. Volcanological and petrologic data indicate continental crustal contamination to be a leading process along with fractional crystallisation and magma mixing. Considering, however, only the samples thought to represent primary magmas, which have been in equilibrium with their mantle source, a clearer picture emerges. A large variation of eSr vs. eNd is still observed, with eSr from −2 to +180 and eNd from + 2 to −12. A bifurcation of this array is observed in the samples that plot in the lower right quadrant, with mafic leucite-bearing Roman Province rocks buffered at eSr = + 100 whereas the mafic leucite-free potassic and ultrapotassic rocks point to strongly radiogenic Sr compositions. We may argue that mafic leucite-bearing Roman Province rocks point to eSr and eNd values similar to those of Miocene carbonate sediments whereas mafic leucite-free potassic and ultrapotassic rocks point to a silicate upper crust end-member. Lead isotopes plot well inside the field of island arcs, overlapping the values of pelagic sediments as well, but bifurcation between the samples north and south of Rome is observed. The main characteristic for the mantle source of Italian potassic and ultrapotassic magmas is the clear upper crustal signature acquired prior to partial melting through metasomatic agents released by the subducted slab. In addition, one lithospheric mantle source in the north and an asthenospheric mantle source, pointing to an HIMU reservoir, in the south were recognised. The chemical and isotopic differences observed between the northern and southern sectors of the magmatic region were possibly due to the presence of a carbonate-rich component in the crustal enriching agent in the south. One crustal component might have been generated by melting of silicate metasedimentary rocks or sediments from an ancient subducted slab. The second one might reflect the activity of mostly CO2-rich fluid released more recently by the incipient subduction of carbonate sedimentary rocks.

202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the products of shallow-level exchanges between the upper mantle and slab-derived fluids, and calculated very large slab inventory depletions of B (79%), Cs (32%), Li (18%), As (17%), and Sb (12%).
Abstract: [1] Recent examinations of the chemical fluxes through convergent plate margins suggest the existence of significant mass imbalances for many key species: only 20–30% of the to-the-trench inventory of large-ion lithophile elements (LILE) can be accounted for by the magmatic outputs of volcanic arcs. Active serpentinite mud volcanism in the shallow forearc region of the Mariana convergent margin presents a unique opportunity to study a new outflux: the products of shallow-level exchanges between the upper mantle and slab-derived fluids. ODP Leg 125 recovered serpentinized harzburgites and dunites from three sites on the crests and flanks of the active Conical Seamount. These serpentinites have U-shaped rare earth element (REE) patterns, resembling those of boninites. U, Th, and the high field strength elements (HFSE) are highly depleted and vary in concentration by up to 2 orders of magnitude. The low U contents and positive Eu anomalies indicate that fluids from the subducting Pacific slab were probably reducing in nature. On the basis of substantial enrichments of fluid-mobile elements in serpentinized peridotites, we calculated very large slab inventory depletions of B (79%), Cs (32%), Li (18%), As (17%), and Sb (12%). Such highly enriched serpentinized peridotites dragged down to depths of arc magma generation may represent an unexplored reservoir that could help balance the input-output deficit of these elements as observed by Plank and Langmuir (1993, 1998) and others. Surprisingly, many species thought to be mobile in fluids, such as U, Ba, Rb, and to a lesser extent Sr and Pb, are not enriched in the rocks relative to the depleted mantle peridotites, and we estimate that only 1–2% of these elements leave the subducting slabs at depths of 10 to 40 km. Enrichments of these elements in volcanic front and behind-the-front arc lavas point to changes in slab fluid composition at greater depths.

186 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of these ideas as well as a new classification of ophiolites, incorporating the diversity in their structural architecture and geochemical signatures that results from variations in petrological, geochemical, and tectonic processes during formation in different geodynamic settings is presented in this article.
Abstract: Ophiolites, and discussions on their origin and significance in Earth's history, have been instrumental in the formulation, testing, and establishment of hypotheses and theories in earth sciences. The definition, tectonic origin, and emplacement mechanisms of ophiolites have been the subject of a dynamic and continually evolving concept since the nineteenth century. Here, we present a review of these ideas as well as a new classification of ophiolites, incorporating the diversity in their structural architecture and geochemical signatures that results from variations in petrological, geochemical, and tectonic processes during formation in different geodynamic settings. We define ophiolites as suites of temporally and spatially associated ultramafic to felsic rocks related to separate melting episodes and processes of magmatic differentiation in particular tectonic environments. Their geochemical characteristics, internal structure, and thickness vary with spreading rate, proximity to plumes or trenches, mantle temperature, mantle fertility, and the availability of fluids. Subduction-related ophiolites include suprasubduction-zone and volcanic-arc types, the evolution of which is governed by slab dehydration and accompanying metasomatism of the mantle, melting of the subducting sediments, and repeated episodes of partial melting of metasomatized peridotites. Subduction-unrelated ophiolites include continental-margin, mid-ocean-ridge (plume-proximal, plume-distal, and trench-distal), and plume-type (plume-proximal ridge and oceanic plateau) ophiolites that generally have mid-ocean-ridge basalt (MORB) compositions. Subduction-related lithosphere and ophiolites develop during the closure of ocean basins, whereas subduction-unrelated types evolve during rift drift and seafloor spreading. The peak times of ophiolite genesis and emplacement in Earth history coincided with collisional events leading to the construction of supercontinents, continental breakup, and plume-related supermagmatic events. Geochemical and tectonic fingerprinting of Phanerozoic ophiolites within the framework of this new ophiolite classification is an effective tool for identification of the geodynamic settings of oceanic crust formation in Earth history, and it can be extended into Precambrian greenstone belts in order to investigate the ways in which oceanic crust formed in the Archean.

904 citations

Journal ArticleDOI
TL;DR: Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines as mentioned in this paper, which is the most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab.
Abstract: Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust.

881 citations

Journal ArticleDOI
TL;DR: This paper reviewed available data constraining the extent, volume, age and duration of all major Phanerozoic continental flood basalts (CFB or traps) and oceanic plateaus (OP), together forming the group of large igneous provinces (LIPs).

761 citations

Journal ArticleDOI
TL;DR: The K2O^SiO2 diagram, used to divide volcanic arc rocks into rock types (basalts, basaltic andesites, dacites and rhyolites) and volcanic series (tholeiitic, calc-alkaline and shoshonitic), is particularly susceptible to the effects of alteration as discussed by the authors.
Abstract: Many diagrams conventionally used to classify igneous rocks utilize mobile elements, which commonly renders them unreliable for classifying rocks from the geological record.The K2O^SiO2 diagram, used to subdivide volcanic arc rocks into rock type (basalts, basaltic andesites, andesites, dacites and rhyolites) and volcanic series (tholeiitic, calc-alkaline, high-K calc-alkaline and shoshonitic), is particularly susceptible to the effects of alteration.However, by usingTh as a proxy for K2O and Co as a proxy for SiO2 it is possible to construct a topologically similar diagram that performs the same task but is more robust for weathered and metamorphosed rocks. This study uses 41000 carefully filtered Tertiary^Recent island arc samples to construct aTh^Co classification diagram. A‘testing set’comprising data not used in constructing the diagram indicates a classification success rate of c. 80%.When applied to some hydrothermally altered, then tropically weathered Cretaceous volcanic arc lavas from Jamaica, the diagramdemonstrates the presence ofa tholeiitic volcanic arc series dominated by intermediate^acid lavas overlain by a calc-alkaline series dominated by basic lavas.

688 citations

Journal ArticleDOI
TL;DR: In this paper, the age of the Campanian Ignimbrite is estimated to be 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate.
Abstract: The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region.

665 citations