scispace - formally typeset
Search or ask a question
Author

Massimo Santoro

Bio: Massimo Santoro is an academic researcher from University of Turin. The author has contributed to research in topics: Thyroid carcinoma & Thyroid. The author has an hindex of 66, co-authored 173 publications receiving 14778 citations. Previous affiliations of Massimo Santoro include Flanders Institute for Biotechnology & University of Eastern Piedmont.


Papers
More filters
Journal ArticleDOI
23 Feb 1990-Cell
TL;DR: A novel activated oncogene resulted from the rearrangement of an unknown amino-terminal sequence to the tyrosine kinase domain of the ret proto-oncogene and was detected by transfection analysis in five out of 20 primary human thyroid papillary carcinomas and in the available lymph node metastases.

922 citations

Journal ArticleDOI
TL;DR: How the mitochondria has a key role in regulating the interplay between redox homeostasis and metabolism within tumor cells is described, and the potential therapeutic use of agents that directly or indirectly block metabolism is discussed.
Abstract: Tumor cells harbor genetic alterations that promote a continuous and elevated production of reactive oxygen species. Whereas such oxidative stress conditions would be harmful to normal cells, they facilitate tumor growth in multiple ways by causing DNA damage and genomic instability, and ultimately, by reprogramming cancer cell metabolism. This review outlines the metabolic-dependent mechanisms that tumors engage in when faced with oxidative stress conditions that are critical for cancer progression by producing redox cofactors. In particular, we describe how the mitochondria has a key role in regulating the interplay between redox homeostasis and metabolism within tumor cells. Last, we will discuss the potential therapeutic use of agents that directly or indirectly block metabolism.

822 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27kip1-mediated growth arrest and cytoplasmic relocalization of p27Kip1, secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p 27kip 1 are functionally inactivated and the proliferation of breast cancer Cells is sustained.
Abstract: The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained.

712 citations

Journal ArticleDOI
TL;DR: Findings in wound biology clarified the molecular pathways governing keratinocyte reepithelization at wound sites point towards novel therapeutic targets and provide suitable methods to promote faster tissue regeneration in vivo.

387 citations

Journal ArticleDOI
TL;DR: The data suggest that BRAF V600E mutation is associated with high-risk PTC and in particular in follicular variant with invasive tumor growth.
Abstract: Context: Because very few studies have examined the correlation between BRAF mutations and clinicopathological features of papillary thyroid carcinoma (PTC), we analyzed here a large and homogeneous cohort of patients with PTC for the presence of the BRAF mutation. Objective: We examined BRAF mutations in a consecutive series of 500 PTC patients who underwent surgery in the Department of Surgery of the University of Pisa, and we correlated the presence of the mutation with clinicopathological parameters of the patients: age, gender, tumor size, presence of tumor capsule, extrathyroidal invasion, multicentricity, presence of node metastases, and tumor class. Design: BRAF (exon 15) mutation was examined by PCR-single strand conformational polymorphism followed by DNA sequencing in laser-capture microdissected tissue samples. Results: In this study, BRAF mutation was found in 219 of 500 cases (43.8%). In particular, we found the most common BRAF V600E mutation in 214 cases (42.8%), BRAF K601E mutation in thr...

373 citations


Cited by
More filters
Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.

5,505 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations