scispace - formally typeset
Search or ask a question
Author

Massoud Pedram

Bio: Massoud Pedram is an academic researcher from University of Southern California. The author has contributed to research in topics: Energy consumption & CMOS. The author has an hindex of 77, co-authored 780 publications receiving 23047 citations. Previous affiliations of Massoud Pedram include University of California, Berkeley & Syracuse University.


Papers
More filters
Posted Content
TL;DR: The portability and reusability of the UVM standard allows the VeriSFQ framework to serve as a foundation for future SFQ semi-formal verification techniques, and an SFQ verification benchmark consisting of combinational SFQ circuits that exemplify SFQ logic properties are proposed.
Abstract: In this paper, we propose a semi-formal verification framework for single-flux quantum (SFQ) circuits called VeriSFQ, using the Universal Verification Methodology (UVM) standard. The considered SFQ technology is superconducting digital electronic devices that operate at cryogenic temperatures with active circuit elements called the Josephson junction, which operate at high switching speeds and low switching energy - allowing SFQ circuits to operate at frequencies over 300 gigahertz. Due to key differences between SFQ and CMOS logic, verification techniques for the former are not as advanced as the latter. Thus, it is crucial to develop efficient verification techniques as the complexity of SFQ circuits scales. The VeriSFQ framework focuses on verifying the key circuit and gate-level properties of SFQ logic: fanout, gate-level pipeline, path balancing, and input-to-output latency. The combinational circuits considered in analyzing the performance of VeriSFQ are: Kogge-Stone adders (KSA), array multipliers, integer dividers, and select ISCAS'85 combinational benchmark circuits. Methods of introducing bugs into SFQ circuit designs for verification detection were experimented with - including stuck-at faults, fanout errors, unbalanced paths, and functional bugs like incorrect logic gates. In addition, we propose an SFQ verification benchmark consisting of combinational SFQ circuits that exemplify SFQ logic properties and present the performance of the VeriSFQ framework on these benchmark circuits. The portability and reusability of the UVM standard allows the VeriSFQ framework to serve as a foundation for future SFQ semi-formal verification techniques.

3 citations

Journal ArticleDOI
01 Jun 2020
TL;DR: This work defines setup time based on the probability of causing a logic error and develops a new STA method that allows larger increases in clock-to-Q delay, i.e., timing bleed, whenever the data input arrives late.
Abstract: Josephson-junction based technologies, such as RSFQ, are receiving growing investments due to their high speeds and low power.As the time interval between the data input and the clock becomes smaller, clock-to-Q delay of a flip-flop increases. In conventional timing analysis, setup time is defined as the interval where clock-to-Q delay increases by 10%. This allows the pipeline to be divided into separate stages and STA to be performed independently for each stage.However, since RSFQ is pipelined at gate-level, setup time is a significant portion of the clock period and makes this timing constraint extremely conservative. Instead, we define setup time based on the probability of causing a logic error and develop a new STA method that allows larger increases in clock-to-Q delay, i.e., timing bleed, whenever the data input arrives late. We present results of simulations for benchmark circuits with process variations to demonstrate that our new method certifies much higher speeds for RSFQ logic.

3 citations

Journal ArticleDOI
TL;DR: A low-energy inference method for convolutional neural networks in image classification applications that makes use of two pruned neural networks, namely mildly and aggressively pruned networks, which are both designed offline.
Abstract: In this article, we present a low-energy inference method for convolutional neural networks in image classification applications. The lower energy consumption is achieved by using a highly pruned (...

3 citations

Proceedings ArticleDOI
02 Mar 2015
TL;DR: The optimized sense amplifier design has 2-fold lower input voltage difference compared with the baseline counterpart, which according to the architecture-level simulations, causes 26% reduction in the total energy consumption of an L1 cache memory.
Abstract: This paper presents the design optimization of sense amplifiers made of deeply-scaled (7nm) FinFET devices in order to improve the energy efficiency of cache memories, while robust operation of the sense amplifier under process variations is achieved. To this end, an analytical solution for deriving the minimum voltage difference that can be correctly sensed between the sense amplifier inputs, considering process variations, is presented. Device parameters and transistor sizing of the sense amplifier are then optimized in order to further increase the cache energy efficiency. The optimized sense amplifier design has 2-fold lower input voltage difference compared with the baseline counterpart, which according to the architecture-level simulations, causes 26% reduction in the total energy consumption of an L1 cache memory.

3 citations

Journal ArticleDOI
TL;DR: In this paper, a method for offline training of inverter-based memristive neural networks (IM-NNs), called ERIM, is presented, where the output voltage of the inverter is modeled very accurately by considering the loading effect of the memristively crossbar.
Abstract: In this paper, a method for offline training of inverter-based memristive neural networks ( IM -NNs), called ERIM, is presented. In this method, the output voltage of the inverter is modeled very accurately by considering the loading effect of the memristive crossbar. To properly choose the size of each inverter, its output load and the required slope of its voltage transfer characteristic (VTC) for an acceptable level of resiliency to the circuit element non-idealities are taken into account. The efficacy of ERIM is investigated by comparing its accuracy to those of two recently proposed offline training methods for IM -NNs (RIM and PHAX). The study is performed using IRIS, BCW, MNIST, and Fashion MNIST datasets. Simulation results show that 72% (56%) reduction in average energy consumption of the trained networks is achieved compared to RIM (PHAX) thanks to proper sizing of the inverters. In addition, due to the higher accuracy of the NN mathematical model, ERIM results in significant improvements in the match between the results of high-level modeling and HSPICE simulations while exhibiting lower sensitivity to circuit element variations.

3 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations