scispace - formally typeset
Search or ask a question
Author

Massoud Pedram

Bio: Massoud Pedram is an academic researcher from University of Southern California. The author has contributed to research in topics: Energy consumption & CMOS. The author has an hindex of 77, co-authored 780 publications receiving 23047 citations. Previous affiliations of Massoud Pedram include University of California, Berkeley & Syracuse University.


Papers
More filters
Journal ArticleDOI
TL;DR: Circuit optimization and design automation techniques are introduced to bring leakage under control in CMOS circuits and present techniques for active leakage control.
Abstract: In many new high performance designs, the leakage component of power consumption is comparable to the switching component. Reports indicate that 40% or even higher percentage of the total power consumption is due to the leakage of transistors. This percentage will increase with technology scaling unless effective techniques are introduced to bring leakage under control. This article focuses on circuit optimization and design automation techniques to accomplish this goal. The first part of the article provides an overview of basic physics and process scaling trends that have resulted in a significant increase in the leakage currents in CMOS circuits. This part also distinguishes between the standby and active components of the leakage current. The second part of the article describes a number of circuit optimization techniques for controlling the standby leakage current, including power gating and body bias control. The third part of the article presents techniques for active leakage control, including use of multiple-threshold cells, long channel devices, input vector design, transistor stacking to switching noise, and sizing with simultaneous threshold and supply voltage assignment.

292 citations

Journal ArticleDOI
TL;DR: The proposed high-level model, which relies on online current and voltage measurements, correctly accounts for the temperature and cycle aging effects and has a maximum of 5% error between simulated and predicted data.
Abstract: Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing and applying an effective dynamic power management policy for the device This paper starts up by showing that a 30% error in predicting the battery capacity of a lithium-ion battery can result in up to 20% performance degradation for a dynamic voltage and frequency scaling algorithm Next, this paper presents a closed form analytical expression for predicting the remaining capacity of a lithium-ion battery The proposed high-level model, which relies on online current and voltage measurements, correctly accounts for the temperature and cycle aging effects The accuracy of the high-level model is validated by comparing it with DUALFOIL simulation results, demonstrating a maximum of 5% error between simulated and predicted data

271 citations

Proceedings ArticleDOI
12 Aug 2002
TL;DR: In this article, a source-initiated (on-demand) routing protocol for mobile ad hoc networks that increases the network lifetime is proposed, where all nodes start with a finite amount of battery capacity and that the energy dissipation per bit of data and control packet transmission or reception is known.
Abstract: Ad hoc wireless networks are power constrained since nodes operate with limited battery energy. To maximize the lifetime of these networks (defined by the condition that a fixed percentage of the nodes in the network "die out" due to lack of energy), network-related transactions through each mobile node must be controlled such that the power dissipation rates of all nodes are nearly the same. Assuming that all nodes start with a finite amount of battery capacity and that the energy dissipation per bit of data and control packet transmission or reception is known, this paper presents a new source-initiated (on-demand) routing protocol for mobile ad hoc networks that increases the network lifetime. Simulation results show that the proposed power-aware source routing protocol has a higher performance than other source initiated routing protocols in terms of the network lifetime.

251 citations

Journal ArticleDOI
TL;DR: In this paper, the clock behavior in a sequential circuit is modeled by a quaternary variable and two clock-gating techniques are proposed to generate clock synchronous with the master clock.
Abstract: This paper models the clock behavior in a sequential circuit by a quaternary variable and uses this representation to propose and analyze two clock-gating techniques. It then uses the covering relationship between the triggering transition of the clock and the active cycles of various flip flops to generate a derived clock for each flip flop in the circuit. A technique for clock gating is also presented, which generates a derived clock synchronous with the master clock. Design examples using gated clocks are provided next. Experimental results show that these designs have ideal logic functionality with lower power dissipation compared to traditional designs.

240 citations

Book
30 Jun 2002
TL;DR: This book provides a myriad of state-of-the-art approaches to power optimization and control in CMOS circuits, microelectronic systems, wirelessly networked systems of computational nodes and so on.
Abstract: Power Aware Design Methodologies was conceived as an effort to bring all aspects of power-aware design methodologies together in a single document It covers several layers of the design hierarchy from technology, circuit logic, and architectural levels up to the system layer It includes discussion of techniques and methodologies for improving the power efficiency of CMOS circuits (digital and analog), systems on chip, microelectronic systems, wirelessly networked systems of computational nodes and so on In addition to providing an in-depth analysis of the sources of power dissipation in VLSI circuits and systems and the technology and design trends, this book provides a myriad of state-of-the-art approaches to power optimization and control The different chapters of Power Aware Design Methodologies have been written by leading researchers and experts in their respective areas Contributions are from both academia and industry The contributors have reported the various technologies, methodologies, and techniques in such a way that they are understandable and useful

234 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations