scispace - formally typeset
Search or ask a question
Author

Mathew Mate

Bio: Mathew Mate is an academic researcher from University of Massachusetts Amherst. The author has contributed to research in topics: Radical polymerization & End-group. The author has an hindex of 2, co-authored 2 publications receiving 969 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a wide variety of unique polymer brush structures can be accomplished by "living" free radical polymerization of vinyl monomers from surface-tethered alkoxyamines or from tethered α-halo esters in the presence of (PPh3)2NiBr2.
Abstract: The preparation of a wide variety of unique polymer brush structures can be accomplished by “living” free radical polymerization of vinyl monomers from surface-tethered alkoxyamines or from tethered α-halo esters in the presence of (PPh3)2NiBr2. The use of a “living” free radical process permits the molecular weight and polydispersity of the covalently attached polymer chains to be accurately controlled while also allowing the formation of block copolymers by the sequential growth of monomers from the surface. These block and random copolymer brushes have been used to control surface properties.

883 citations

Journal ArticleDOI
TL;DR: In this article, the Mayo mechanism was used for the autopolymerization of styrene, styrenic derivatives, and styrene/(meth)acrylate comonomer mixtures in the presence of stable nitroxide free radicals.
Abstract: The autopolymerization of styrene, styrenic derivatives, and styrene/(meth)acrylate comonomer mixtures in the presence of stable nitroxide free radicals has been shown to be a “living” process. Molecular weight can be controlled by varying the ratio of vinyl monomer to TEMPO and low-polydispersity materials are obtained. Significantly, a definite incubation period is observed during these polymerizations, and the length of this incubation period increases with increasing amounts of TEMPO. The structures of the in situ generated unimolecular initiators which are formed during this incubation period correspond to those expected from a Mayo mechanism for the autopolymerization of styrene. The isolated and purified adducts, 4 and 5, were shown to be effective unimolecular initiators leading to low-polydispersity, controlled molecular weight polymers.

114 citations


Cited by
More filters
Journal ArticleDOI
17 Nov 2006-Science
TL;DR: A challenge for future studies is to create hierarchically structured composites in which each sublayer contributes a distinct function to yield a mechanically integrated, multifunctional material.
Abstract: The mixing of polymers and nanoparticles is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. Recent advances reveal routes to exploit both enthalpic and entropic interactions so as to direct the spatial distribution of nanoparticles and thereby control the macroscopic performance of the material. For example, by tailoring the particle coating and size, researchers have created self-healing materials for improved sustainability and self-corralling rods for photovoltaic applications. A challenge for future studies is to create hierarchically structured composites in which each sublayer contributes a distinct function to yield a mechanically integrated, multifunctional material.

2,396 citations

Journal ArticleDOI
TL;DR: This data indicates that self-Assembled Monolayers and Walled Carbon Nanotubes with high adhesion to Nitroxide-Mediated Polymerization have potential in the well-Defined Polymer Age.
Abstract: Keywords: Fragmentation Chain-Transfer ; Self-Assembled Monolayers ; Walled Carbon Nanotubes ; Well-Defined Polymer ; Nitroxide-Mediated Polymerization ; Block-Copolymer Brushes ; Poly(Methyl Methacrylate) Brushes ; Transfer Raft Polymerization ; Quartz-Crystal Microbalance ; Poly(Acrylic Acid) Brushes Reference EPFL-REVIEW-148464doi:10.1021/cr900045aView record in Web of Science Record created on 2010-04-23, modified on 2017-05-10

1,542 citations