scispace - formally typeset
Search or ask a question
Author

Mathew Penrose

Bio: Mathew Penrose is an academic researcher. The author has contributed to research in topics: Degree (graph theory) & Vertex (graph theory). The author has an hindex of 1, co-authored 1 publications receiving 2161 citations.

Papers
More filters
Book
03 Jul 2003
TL;DR: This chapter discusses probabilistic ingredients, the largest component for a binomial process, and connectedivity and the number of components in a graph-like model.
Abstract: 1. Introduction 2. Probabilistic ingredients 3. Subgraph and component counts 4. Typical vertex degrees 5. Geometrical ingredients 6. Maximum degree, cliques and colourings 7. Minimum degree: laws of large numbers 8. Minimum degree: convergence in distribution 9. Percolative ingredients 10. Percolation and the largest component 11. The largest component for a binomial process 12. Ordering and partitioning problems 13. Connectivity and the number of components References Index

2,271 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the asymptotic behavior of the cost of the solution returned by stochastic sampling-based path planning algorithms as the number of samples increases.
Abstract: During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

3,438 citations

Journal ArticleDOI
TL;DR: This work analyzes the averaging problem under the gossip constraint for an arbitrary network graph, and finds that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic matrix characterizing the algorithm.
Abstract: Motivated by applications to sensor, peer-to-peer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join and old nodes leave the network. Algorithms for such networks need to be robust against changes in topology. Additionally, nodes in sensor networks operate under limited computational, communication, and energy resources. These constraints have motivated the design of "gossip" algorithms: schemes which distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient method that solves the optimization problem over the network. The relation of averaging time to the second largest eigenvalue naturally relates it to the mixing time of a random walk with transition probabilities derived from the gossip algorithm. We use this connection to study the performance and scaling of gossip algorithms on two popular networks: Wireless Sensor Networks, which are modeled as Geometric Random Graphs, and the Internet graph under the so-called Preferential Connectivity (PC) model.

2,634 citations

Book
18 Oct 2012
TL;DR: This rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects.
Abstract: Covering point process theory, random geometric graphs and coverage processes, this rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects. Practical engineering applications are integrated with mathematical theory, with an understanding of probability the only prerequisite. At the same time, stochastic geometry is connected to percolation theory and the theory of random geometric graphs and accompanied by a brief introduction to the R statistical computing language. Combining theory and hands-on analytical techniques with practical examples and exercises, this is a comprehensive guide to the spatial stochastic models essential for modelling and analysis of wireless network performance.

2,327 citations

Posted Content
TL;DR: The main contribution of the paper is the introduction of new algorithms, namely, PRM and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum.
Abstract: During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

2,210 citations

Journal ArticleDOI
TL;DR: This paper will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data, particularly high throughput data from microarray or other sources.
Abstract: An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology It is also clear that the nature of the data we are obtaining is significantly different For example, it is now often the case that we are given data in the form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions of interest, and further that we don’t necessarily know which coordinates are the interesting ones A related fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it The data obtained is also often much noisier than in the past and has more missing information (missing data) This is particularly so in the case of biological data, particularly high throughput data from microarray or other sources Our ability to analyze this data, both in terms of quantity and the nature of the data, is clearly not keeping pace with the data being produced In this paper, we will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data Geometry and topology are very natural tools to apply in this direction, since geometry can be regarded as the study of distance functions, and what one often works with are distance functions on large finite sets of data The mathematical formalism which has been developed for incorporating geometric and topological techniques deals with point clouds, ie finite sets of points equipped with a distance function It then adapts tools from the various branches of geometry to the study of point clouds The point clouds are intended to be thought of as finite samples taken from a geometric object, perhaps with noise Here are some of the key points which come up when applying these geometric methods to data analysis • Qualitative information is needed: One important goal of data analysis is to allow the user to obtain knowledge about the data, ie to understand how it is organized on a large scale For example, if we imagine that we are looking at a data set constructed somehow from diabetes patients, it would be important to develop the understanding that there are two types of the disease, namely the juvenile and adult onset forms Once that is established, one of course wants to develop quantitative methods for distinguishing them, but the first insight about the distinct forms of the disease is key

2,203 citations