scispace - formally typeset
Search or ask a question
Author

Mathieu Aubry

Bio: Mathieu Aubry is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Convolutional neural network & Computer science. The author has an hindex of 25, co-authored 85 publications receiving 4503 citations. Previous affiliations of Mathieu Aubry include ParisTech & University of California, Berkeley.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
01 Nov 2011
TL;DR: Both theoretically and in quantitative experiments it is demonstrated that the WKS is substantially more discriminative and therefore allows for better feature matching than the commonly used Heat Kernel Signature.
Abstract: We introduce the Wave Kernel Signature (WKS) for characterizing points on non-rigid three-dimensional shapes. The WKS represents the average probability of measuring a quantum mechanical particle at a specific location. By letting vary the energy of the particle, the WKS encodes and separates information from various different Laplace eigenfrequencies. This clear scale separation makes the WKS well suited for a large variety of applications. Both theoretically and in quantitative experiments we demonstrate that the WKS is substantially more discriminative and therefore allows for better feature matching than the commonly used Heat Kernel Signature (HKS). As an application of the WKS in shape analysis we show results on shape matching.

767 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: An exemplar-based 3D category representation is proposed, which can explicitly model chairs of different styles as well as the large variation in viewpoint, and an approach to establish part-based correspondences between 3D CAD models and real photographs is developed.
Abstract: This paper poses object category detection in images as a type of 2D-to-3D alignment problem, utilizing the large quantities of 3D CAD models that have been made publicly available online. Using the "chair" class as a running example, we propose an exemplar-based 3D category representation, which can explicitly model chairs of different styles as well as the large variation in viewpoint. We develop an approach to establish part-based correspondences between 3D CAD models and real photographs. This is achieved by (i) representing each 3D model using a set of view-dependent mid-level visual elements learned from synthesized views in a discriminative fashion, (ii) carefully calibrating the individual element detectors on a common dataset of negative images, and (iii) matching visual elements to the test image allowing for small mutual deformations but preserving the viewpoint and style constraints. We demonstrate the ability of our system to align 3D models with 2D objects in the challenging PASCAL VOC images, which depict a wide variety of chairs in complex scenes.

597 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: This work introduces a method for learning to generate the surface of 3D shapes as a collection of parametric surface elements and, in contrast to methods generating voxel grids or point clouds, naturally infers a surface representation of the shape.
Abstract: We introduce a method for learning to generate the surface of 3D shapes. Our approach represents a 3D shape as a collection of parametric surface elements and, in contrast to methods generating voxel grids or point clouds, naturally infers a surface representation of the shape. Beyond its novelty, our new shape generation framework, AtlasNet, comes with significant advantages, such as improved precision and generalization capabilities, and the possibility to generate a shape of arbitrary resolution without memory issues. We demonstrate these benefits and compare to strong baselines on the ShapeNet benchmark for two applications: (i) autoencoding shapes, and (ii) single-view reconstruction from a still image. We also provide results showing its potential for other applications, such as morphing, parametrization, super-resolution, matching, and co-segmentation.

442 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: It is demonstrated that the end-to-end trained ConvNet supervised by cycle-consistency outperforms state-of-the-art pairwise matching methods in correspondence-related tasks.
Abstract: Discriminative deep learning approaches have shown impressive results for problems where human-labeled ground truth is plentiful, but what about tasks where labels are difficult or impossible to obtain? This paper tackles one such problem: establishing dense visual correspondence across different object instances. For this task, although we do not know what the ground-truth is, we know it should be consistent across instances of that category. We exploit this consistency as a supervisory signal to train a convolutional neural network to predict cross-instance correspondences between pairs of images depicting objects of the same category. For each pair of training images we find an appropriate 3D CAD model and render two synthetic views to link in with the pair, establishing a correspondence flow 4-cycle. We use ground-truth synthetic-to-synthetic correspondences, provided by the rendering engine, to train a ConvNet to predict synthetic-to-real, real-to-real and realto-synthetic correspondences that are cycle-consistent with the ground-truth. At test time, no CAD models are required. We demonstrate that our end-to-end trained ConvNet supervised by cycle-consistency outperforms stateof-the-art pairwise matching methods in correspondencerelated tasks.

387 citations

Proceedings Article
18 Jun 2018
TL;DR: A method for learning to generate the surface of 3D shapes as a collection of parametric surface elements and, in contrast to methods generating voxel grids or point clouds, naturally infers a surface representation of the shape.
Abstract: We introduce a method for learning to generate the surface of 3D shapes. Our approach represents a 3D shape as a collection of parametric surface elements and, in contrast to methods generating voxel grids or point clouds, naturally infers a surface representation of the shape. Beyond its novelty, our new shape generation framework, AtlasNet, comes with significant advantages, such as improved precision and generalization capabilities, and the possibility to generate a shape of arbitrary resolution without memory issues. We demonstrate these benefits and compare to strong baselines on the ShapeNet benchmark for two applications: (i) auto-encoding shapes, and (ii) single-view reconstruction from a still image. We also provide results showing its potential for other applications, such as morphing, parametrization, super-resolution, matching, and co-segmentation.

377 citations


Cited by
More filters
Proceedings ArticleDOI
01 Oct 2017
TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

11,682 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper designs a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input and provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing.
Abstract: Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.

9,457 citations

Posted Content
TL;DR: A hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set and proposes novel set learning layers to adaptively combine features from multiple scales to learn deep point set features efficiently and robustly.
Abstract: Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.

4,802 citations

Posted Content
TL;DR: This work presents an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples, and introduces a cycle consistency loss to push F(G(X)) ≈ X (and vice versa).
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain $X$ to a target domain $Y$ in the absence of paired examples. Our goal is to learn a mapping $G: X \rightarrow Y$ such that the distribution of images from $G(X)$ is indistinguishable from the distribution $Y$ using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping $F: Y \rightarrow X$ and introduce a cycle consistency loss to push $F(G(X)) \approx X$ (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

4,465 citations