scispace - formally typeset
Search or ask a question
Author

Mathilde Raverdeau

Bio: Mathilde Raverdeau is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: T cell & Innate immune system. The author has an hindex of 13, co-authored 19 publications receiving 1024 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete ‘paralysis’ of their cellular metabolism and trafficking and suggested that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.
Abstract: Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.

344 citations

Journal ArticleDOI
TL;DR: Retinoic acid attenuates colitis and is associated with increased IL-22 production from γδ T cells and innate lymphoid cells and enhanced antimicrobial peptide expression.
Abstract: Retinoic acid (RA), a vitamin A metabolite, modulates mucosal T helper cell responses. Here we examined the role of RA in regulating IL-22 production by γδ T cells and innate lymphoid cells in intestinal inflammation. RA significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23. In vivo RA attenuated colon inflammation induced by dextran sodium sulfate treatment or Citrobacter rodentium infection. This was associated with a significant increase in IL-22 secretion by γδ T cells and innate lymphoid cells. In addition, RA treatment enhanced production of the IL-22–responsive antimicrobial peptides Reg3β and Reg3γ in the colon. The attenuating effects of RA on colitis were reversed by treatment with an anti–IL-22 neutralizing antibody, demonstrating that RA mediates protection by enhancing IL-22 production. To define the molecular events involved, we used chromatin immunoprecipitation assays and found that RA promoted binding of RA receptor to the IL-22 promoter in γδ T cells. Our findings provide novel insights into the molecular events controlling IL-22 transcription and suggest that one key outcome of RA signaling may be to shape early intestinal immune responses by promoting IL-22 synthesis by γδ T cells and innate lymphoid cells.

252 citations

Journal ArticleDOI
TL;DR: Retinoic acid plays a role in immune homeostasis in the steady-state but activates pathogenic T cells in conditions of inflammation.
Abstract: Retinoic acid (RA) is produced by a number of cell types, including macrophages and dendritic cells, which express retinal dehydrogenases that convert vitamin A to its main biologically active metabolite, all-trans RA. All-trans RA binds to its nuclear retinoic acid receptors that are expressed in lymphoid cells and act as transcription factors to regulate cell homing and differentiation. RA production by CD103(+) dendritic cells and alveolar macrophages functions with TGF-β to promote conversion of naive T cells into Foxp3(+) regulatory T cells and, thereby, maintain mucosal tolerance. Furthermore, RA inhibits the differentiation of naive T cells into Th17 cells. However, Th1 and Th17 responses are constrained during vitamin A deficiency and in nuclear RA receptor α-defective mice. Furthermore, RA promotes effector T cell responses during infection or autoimmune diseases. Thus, RA plays a role in immune homeostasis in the steady-state but activates pathogenic T cells in conditions of inflammation.

180 citations

Journal ArticleDOI
TL;DR: The role of IL-17-secreting CD4 and γδ T cells in EAE and MS, the plasticity of Th17 cells in vivo and the application of these findings to the understating of the pathogenesis and the development of new treatments for MS are focused on.

85 citations

Journal ArticleDOI
TL;DR: It is demonstrated that lung γδ T cells provide an early source of innate IL-17, which promotes antimicrobial peptide production, whereas pathogen-specific Vγ4 cells function in adaptive immunological memory against B. pertussis.
Abstract: γδ T cells play a role in protective immunity to infection at mucosal surface, but also mediate pathology in certain autoimmune diseases through innate IL-17 production. Recent reports have suggested that γδ T cells can have memory analogous to conventional αβ T cells. In this study we have examined the role of γδ T cells in immunity to the respiratory pathogen Bordetella pertussis γδ T cells, predominantly Vγ4-γ1- cells, produced IL-17 in the lungs as early as 2 h after infection. The bacterial burden during primary infection was significantly enhanced and the induction of antimicrobial peptides was reduced in the absence of early IL-17. A second peak of γδ T cells is detected in the lungs 7-14 d after challenge and these γδ T cells were pathogen specific. γδ T cells, exclusively Vγ4, from the lungs of infected but not naive mice produced IL-17 in response to heat-killed B. pertussis in the presence of APC. Furthermore, γδ T cells from the lungs of mice reinfected with B. pertussis produced significantly more IL-17 than γδ T cells from infected unprimed mice. γδ T cells with a tissue resident memory T cell phenotype (CD69+CD103+) were expanded in the lungs during infection with B. pertussis and proliferated rapidly after rechallenge of convalescent mice. Our findings demonstrate that lung γδ T cells provide an early source of innate IL-17, which promotes antimicrobial peptide production, whereas pathogen-specific Vγ4 cells function in adaptive immunological memory against B. pertussis.

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of cytokines produced by innate and adaptive immune cells, as well as their relevance to the future therapy of IBD are discussed.
Abstract: Erroneous communication between the innate and adaptive immune systems through cytokines results in exaggerated or attenuated immune response. It is not known whether the pathologic immune response in inflammatory bowel disease has its origin in a dysbalance of pro- and anti-inflammatory cytokine release or whether it is secondary in subsequence of a defective intestinal barrier or the destructive power of aggressive microbiota in the gut lumen.

1,938 citations

Journal ArticleDOI
23 Aug 2018-Cell
TL;DR: The advances in ILC biology over the past decade are distill the advances to refine the nomenclature of ILCs and highlight the importance of I LCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.

1,252 citations

Journal ArticleDOI
TL;DR: The anatomical and physiological distinctions that are observed in the small and large intestines are detailed, and it is suggested how these may account for the diversity in the immune apparatus that is seen throughout the intestine.
Abstract: The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.

1,094 citations

Journal ArticleDOI
TL;DR: The central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens is described.
Abstract: Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens.

970 citations

Journal ArticleDOI
14 Aug 1987-JAMA
TL;DR: Although a variety of univariate statistics are included, certain topics that are important in medical research are not, and there is little or no discussion of multiple regression, life-table techniques, or pooling of studies.
Abstract: This book attempts to achieve a difficult goal: to teach statistics to the novice so as to impart a liking and understanding of statistics. The book is geared toward a medical audience, since most examples are from the medical literature. The structure of the book consists of the following elements in each chapter: a small number of statistical rules of thumb, followed by a nontechnical explanation, a demonstration of how to work through the mechanics of doing the statistical test in question, a summary, and sample problems to be solved by the reader. (The answers, with explanations, are provided in an appendix.) Although a variety of univariate statistics are included, certain topics that are important in medical research are not. For example, there is little or no discussion of multiple regression, life-table techniques, or pooling of studies. These omissions, especially of multiple regression, are unfortunate. The Primer was derived from

898 citations