scispace - formally typeset
Search or ask a question
Author

Matija Hedl

Other affiliations: University of Chicago
Bio: Matija Hedl is an academic researcher from Yale University. The author has contributed to research in topics: Cytokine secretion & Cytokine. The author has an hindex of 18, co-authored 33 publications receiving 5307 citations. Previous affiliations of Matija Hedl include University of Chicago.

Papers
More filters
Journal ArticleDOI
Luke Jostins1, Stephan Ripke2, Rinse K. Weersma3, Richard H. Duerr4, Dermot P.B. McGovern5, Ken Y. Hui6, James Lee7, L. Philip Schumm8, Yashoda Sharma6, Carl A. Anderson1, Jonah Essers9, Mitja Mitrovic3, Kaida Ning6, Isabelle Cleynen10, Emilie Theatre11, Sarah L. Spain12, Soumya Raychaudhuri9, Philippe Goyette13, Zhi Wei14, Clara Abraham6, Jean-Paul Achkar15, Tariq Ahmad16, Leila Amininejad17, Ashwin N. Ananthakrishnan9, Vibeke Andersen18, Jane M. Andrews19, Leonard Baidoo4, Tobias Balschun20, Peter A. Bampton21, Alain Bitton22, Gabrielle Boucher13, Stephan Brand23, Carsten Büning24, Ariella Cohain25, Sven Cichon26, Mauro D'Amato27, Dirk De Jong3, Kathy L Devaney9, Marla Dubinsky5, Cathryn Edwards28, David Ellinghaus20, Lynnette R. Ferguson29, Denis Franchimont17, Karin Fransen3, Richard B. Gearry30, Michel Georges11, Christian Gieger, Jürgen Glas22, Talin Haritunians5, Ailsa Hart31, Christopher J. Hawkey32, Matija Hedl6, Xinli Hu9, Tom H. Karlsen33, Limas Kupčinskas34, Subra Kugathasan35, Anna Latiano36, Debby Laukens37, Ian C. Lawrance38, Charlie W. Lees39, Edouard Louis11, Gillian Mahy40, John C. Mansfield41, Angharad R. Morgan29, Craig Mowat42, William G. Newman43, Orazio Palmieri36, Cyriel Y. Ponsioen44, Uroš Potočnik45, Natalie J. Prescott6, Miguel Regueiro4, Jerome I. Rotter5, Richard K Russell46, Jeremy D. Sanderson47, Miquel Sans, Jack Satsangi39, Stefan Schreiber20, Lisa A. Simms48, Jurgita Sventoraityte34, Stephan R. Targan, Kent D. Taylor5, Mark Tremelling49, Hein W. Verspaget50, Martine De Vos37, Cisca Wijmenga3, David C. Wilson39, Juliane Winkelmann51, Ramnik J. Xavier9, Sebastian Zeissig20, Bin Zhang25, Clarence K. Zhang6, Hongyu Zhao6, Mark S. Silverberg52, Vito Annese, Hakon Hakonarson53, Steven R. Brant54, Graham L. Radford-Smith55, Christopher G. Mathew12, John D. Rioux13, Eric E. Schadt25, Mark J. Daly2, Andre Franke20, Miles Parkes7, Severine Vermeire10, Jeffrey C. Barrett1, Judy H. Cho6 
Wellcome Trust Sanger Institute1, Broad Institute2, University of Groningen3, University of Pittsburgh4, Cedars-Sinai Medical Center5, Yale University6, University of Cambridge7, University of Chicago8, Harvard University9, Katholieke Universiteit Leuven10, University of Liège11, King's College London12, Université de Montréal13, New Jersey Institute of Technology14, Cleveland Clinic15, Peninsula College of Medicine and Dentistry16, Université libre de Bruxelles17, Aarhus University18, University of Adelaide19, University of Kiel20, Flinders University21, McGill University22, Ludwig Maximilian University of Munich23, Charité24, Icahn School of Medicine at Mount Sinai25, University of Bonn26, Karolinska Institutet27, Torbay Hospital28, University of Auckland29, Christchurch Hospital30, Imperial College London31, Queen's University32, University of Oslo33, Lithuanian University of Health Sciences34, Emory University35, Casa Sollievo della Sofferenza36, Ghent University37, University of Western Australia38, University of Edinburgh39, Queensland Health40, Newcastle University41, University of Dundee42, University of Manchester43, University of Amsterdam44, University of Maribor45, Royal Hospital for Sick Children46, Guy's and St Thomas' NHS Foundation Trust47, QIMR Berghofer Medical Research Institute48, Norfolk and Norwich University Hospital49, Leiden University50, Technische Universität München51, University of Toronto52, University of Pennsylvania53, Johns Hopkins University54, University of Queensland55
01 Nov 2012-Nature
TL;DR: A meta-analysis of Crohn’s disease and ulcerative colitis genome-wide association scans is undertaken, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls.
Abstract: Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

4,094 citations

Journal ArticleDOI
08 Nov 2012-Nature
TL;DR: It is described that IL-22BP has a crucial role in controlling tumorigenesis and epithelial cell proliferation in the colon in steady-state conditions and the IL- 22–IL-22 BP axis critically regulates intestinal tissue repair and tumorsigenesis in the Colon.
Abstract: Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. This association could be explained by the hypothesis that the same factors and pathways important for wound healing also promote tumorigenesis. A sensor of tissue damage should induce these factors to promote tissue repair and regulate their action to prevent development of cancer. Interleukin 22 (IL-22), a cytokine of the IL-10 superfamily, has an important role in colonic epithelial cell repair, and its levels are increased in the blood and intestine of inflammatory bowel disease patients. This cytokine can be neutralized by the soluble IL-22 receptor, known as the IL-22 binding protein (IL-22BP, also known as IL22RA2); however, the significance of endogenous IL-22BP in vivo and the pathways that regulate this receptor are unknown. Here we describe that IL-22BP has a crucial role in controlling tumorigenesis and epithelial cell proliferation in the colon. IL-22BP is highly expressed by dendritic cells in the colon in steady-state conditions. Sensing of intestinal tissue damage via the NLRP3 or NLRP6 inflammasomes led to an IL-18-dependent downregulation of IL-22BP, thereby increasing the ratio of IL-22/IL-22BP. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumour development if uncontrolled during the recovery phase. Thus, the IL-22-IL-22BP axis critically regulates intestinal tissue repair and tumorigenesis in the colon.

625 citations

Journal ArticleDOI
TL;DR: It is suggested that a signaling defect of innate immunity to MDP may be an essential underlying defect in the pathogenesis of some CD patients, and post-transcriptional dependency on the NOD2/CARD15 pathway for IL-1beta secretion with MDP and TNFalpha treatment is demonstrated.
Abstract: Crohn's disease (CD) is a chronic inflammation affecting the gastrointestinal tract. Three mutations (Arg702Trp, Gly908Arg and Leu1007fsinsC) within the NOD2/CARD15 gene increase CD susceptibility. Here, we define cytokine regulation in primary human mononuclear cells, with muramyl dipeptide (MDP), the minimal NOD2/CARD15 activating component of peptidoglycan. By microarray, MDP induces a broad array of transcripts, including interleukin 1beta (IL-1beta) and interleukin 8 (IL-8). Leu1007fsinsC homozygotes demonstrated decreased transcriptional response to MDP. Electromobility shift assay demonstrated that MDP-induced NF-kappaB activation is mediated via p50 and p65 subunits, but not RelB or c-Rel. In wild-type individuals, MDP-induced IL-8 protein expression with a greater response to high dose (1 micro g/ml) compared with low-dose (10 ng/ml) MDP. At low MDP doses, in all homozygotes, we observed no induction of IL-8 protein. With high doses of MDP, Leu1007fsinsC homozygotes showed no induction. Modest induction of IL-8 protein was observed in Gly908Arg and Arg702Trp homozygotes, indicating varying MDP sensitivity of the CD-associated mutations. In wild-type healthy control, CD and ulcerative colitis individuals, low-dose MDP and TNFalpha alone results in only modest IL-1beta protein induction. With MDP plus TNFalpha, there is a synergistic induction of IL-1beta secretion. In Leu1007fsinsC homozygotes, there is a profound defect in IL-1beta secretion, despite marked induction of IL-1beta mRNA. These findings demonstrate post-transcriptional dependency on the NOD2/CARD15 pathway for IL-1beta secretion with MDP and TNFalpha treatment. Taken together, these studies suggest that a signaling defect of innate immunity to MDP may be an essential underlying defect in the pathogenesis of some CD patients.

276 citations

Journal ArticleDOI
TL;DR: It is found that pretreatment with muramyl dipeptide (MDP), a ligand for Nod2, significantly decreased production of the proinflammatory cytokines TNF-α, IL-8, and IL-1β upon Nod 2, TLR4, and TLR2 restimulation in primary human monocyte-derived macrophages from a large cohort of individuals.
Abstract: The Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (Nod) families of proteins are critical for bacterial recognition, and, acutely, this frequently leads to proinflammatory responses. Polymorphisms in Nod2 (CARD 15) are associated with an increased likelihood of developing Crohn's disease. However, it is not yet clear how Nod2 dysfunctions lead to defects in human intestinal immune homeostasis. Studies to date have focused on functions after acute, rather than chronic, Nod2 stimulation. However, the intestine is an environment of chronic bacterial product exposure with tolerance to luminal flora. We therefore hypothesized that long-term Nod2 stimulation contributes to down-regulation of inflammatory responses from innate immune receptors. We found that pretreatment with muramyl dipeptide (MDP), a ligand for Nod2, significantly decreased production of the proinflammatory cytokines TNF-α, IL-8, and IL-1β upon Nod2, TLR4, and TLR2 restimulation in primary human monocyte-derived macrophages from a large cohort of individuals. Importantly, TNF-α-induced production of proinflammatory cytokines remained intact in these same cells. MDP-stimulated macrophages from Crohn's disease-relevant Leu1007insC Nod2 homozygote individuals were deficient in their ability to cross-tolerize to subsequent treatment with TLR2 and TLR4 ligands. We show that acute Nod2 stimulation induced IRAK-1 activation, and that chronic MDP treatment down-regulated IRAK-1 activation upon Nod2 or TLR4 restimulation. In a subset of individuals, chronic Nod2 stimulation induced expression of the IRAK-1 inhibitory protein IRAK-M. Significantly, intestinal macrophages exhibit tolerance to MDP per production of inflammatory cytokines. These results illustrate a role for chronic stimulation of Nod2 in mediating tolerance to bacterial products.

252 citations

Journal ArticleDOI
TL;DR: It is found that IRF5 is needed for PRR-enhanced glycolysis in human macrophages and in mice in vivo and further insight into mechanisms contributing to the increasingly recognized important role for glycolynsis in inflammation is provided.

73 citations


Cited by
More filters
Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale1, Benjamin M. Neale2  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations

Journal ArticleDOI
Anshul Kundaje1, Wouter Meuleman2, Wouter Meuleman1, Jason Ernst3, Misha Bilenky4, Angela Yen2, Angela Yen1, Alireza Heravi-Moussavi4, Pouya Kheradpour1, Pouya Kheradpour2, Zhizhuo Zhang1, Zhizhuo Zhang2, Jianrong Wang1, Jianrong Wang2, Michael J. Ziller2, Viren Amin5, John W. Whitaker, Matthew D. Schultz6, Lucas D. Ward2, Lucas D. Ward1, Abhishek Sarkar2, Abhishek Sarkar1, Gerald Quon1, Gerald Quon2, Richard Sandstrom7, Matthew L. Eaton1, Matthew L. Eaton2, Yi-Chieh Wu1, Yi-Chieh Wu2, Andreas R. Pfenning2, Andreas R. Pfenning1, Xinchen Wang1, Xinchen Wang2, Melina Claussnitzer1, Melina Claussnitzer2, Yaping Liu1, Yaping Liu2, Cristian Coarfa5, R. Alan Harris5, Noam Shoresh2, Charles B. Epstein2, Elizabeta Gjoneska1, Elizabeta Gjoneska2, Danny Leung8, Wei Xie8, R. David Hawkins8, Ryan Lister6, Chibo Hong9, Philippe Gascard9, Andrew J. Mungall4, Richard A. Moore4, Eric Chuah4, Angela Tam4, Theresa K. Canfield7, R. Scott Hansen7, Rajinder Kaul7, Peter J. Sabo7, Mukul S. Bansal1, Mukul S. Bansal10, Mukul S. Bansal2, Annaick Carles4, Jesse R. Dixon8, Kai How Farh2, Soheil Feizi1, Soheil Feizi2, Rosa Karlic11, Ah Ram Kim2, Ah Ram Kim1, Ashwinikumar Kulkarni12, Daofeng Li13, Rebecca F. Lowdon13, Ginell Elliott13, Tim R. Mercer14, Shane Neph7, Vitor Onuchic5, Paz Polak2, Paz Polak15, Nisha Rajagopal8, Pradipta R. Ray12, Richard C Sallari1, Richard C Sallari2, Kyle Siebenthall7, Nicholas A Sinnott-Armstrong1, Nicholas A Sinnott-Armstrong2, Michael Stevens13, Robert E. Thurman7, Jie Wu16, Bo Zhang13, Xin Zhou13, Arthur E. Beaudet5, Laurie A. Boyer1, Philip L. De Jager15, Philip L. De Jager2, Peggy J. Farnham17, Susan J. Fisher9, David Haussler18, Steven J.M. Jones4, Steven J.M. Jones19, Wei Li5, Marco A. Marra4, Michael T. McManus9, Shamil R. Sunyaev2, Shamil R. Sunyaev15, James A. Thomson20, Thea D. Tlsty9, Li-Huei Tsai2, Li-Huei Tsai1, Wei Wang, Robert A. Waterland5, Michael Q. Zhang21, Lisa Helbling Chadwick22, Bradley E. Bernstein15, Bradley E. Bernstein2, Bradley E. Bernstein6, Joseph F. Costello9, Joseph R. Ecker11, Martin Hirst4, Alexander Meissner2, Aleksandar Milosavljevic5, Bing Ren8, John A. Stamatoyannopoulos7, Ting Wang13, Manolis Kellis2, Manolis Kellis1 
19 Feb 2015-Nature
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

5,037 citations

Journal ArticleDOI
Kristin G. Ardlie, David S. DeLuca, Ayellet V. Segrè, Timothy J. Sullivan, Taylor Young, Ellen Gelfand, Casandra A. Trowbridge, Julian Maller, Taru Tukiainen, Monkol Lek, Lucas D. Ward, Pouya Kheradpour, Benjamin Iriarte, Yan Meng, Cameron D. Palmer, Tõnu Esko, Wendy Winckler, Joel N. Hirschhorn, Manolis Kellis, Daniel G. MacArthur, Gad Getz, Andrey A. Shabalin, Gen Li, Yi-Hui Zhou, Andrew B. Nobel, Ivan Rusyn, Fred A. Wright, Tuuli Lappalainen, Pedro G. Ferreira, Halit Ongen, Manuel A. Rivas, Alexis Battle, Sara Mostafavi, Jean Monlong, Michael Sammeth, Marta Melé, Ferran Reverter, Jakob M. Goldmann, Daphne Koller, Roderic Guigó, Mark I. McCarthy, Emmanouil T. Dermitzakis, Eric R. Gamazon, Hae Kyung Im, Anuar Konkashbaev, Dan L. Nicolae, Nancy J. Cox, Timothée Flutre, Xiaoquan Wen, Matthew Stephens, Jonathan K. Pritchard, Zhidong Tu, Bin Zhang, Tao Huang, Quan Long, Luan Lin, Jialiang Yang, Jun Zhu, Jun Liu, Amanda Brown, Bernadette Mestichelli, Denee Tidwell, Edmund Lo, Mike Salvatore, Saboor Shad, Jeffrey A. Thomas, John T. Lonsdale, Michael T. Moser, Bryan Gillard, Ellen Karasik, Kimberly Ramsey, Christopher Choi, Barbara A. Foster, John Syron, Johnell Fleming, Harold Magazine, Rick Hasz, Gary Walters, Jason Bridge, Mark Miklos, Susan L. Sullivan, Laura Barker, Heather M. Traino, Maghboeba Mosavel, Laura A. Siminoff, Dana R. Valley, Daniel C. Rohrer, Scott D. Jewell, Philip A. Branton, Leslie H. Sobin, Mary Barcus, Liqun Qi, Jeffrey McLean, Pushpa Hariharan, Ki Sung Um, Shenpei Wu, David Tabor, Charles Shive, Anna M. Smith, Stephen A. Buia, Anita H. Undale, Karna Robinson, Nancy Roche, Kimberly M. Valentino, Angela Britton, Robin Burges, Debra Bradbury, Kenneth W. Hambright, John Seleski, Greg E. Korzeniewski, Kenyon Erickson, Yvonne Marcus, Jorge Tejada, Mehran Taherian, Chunrong Lu, Margaret J. Basile, Deborah C. Mash, Simona Volpi, Jeffery P. Struewing, Gary F. Temple, Joy T. Boyer, Deborah Colantuoni, Roger Little, Susan E. Koester, Latarsha J. Carithers, Helen M. Moore, Ping Guan, Carolyn C. Compton, Sherilyn Sawyer, Joanne P. Demchok, Jimmie B. Vaught, Chana A. Rabiner, Nicole C. Lockhart 
08 May 2015-Science
TL;DR: The landscape of gene expression across tissues is described, thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants are cataloged, complex network relationships are described, and signals from genome-wide association studies explained by eQTLs are identified.
Abstract: Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysi...

4,418 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: Recently, substantial advances in the understanding of the molecular pathogenesis of inflammatory bowel disease (IBD) have been made owing to three related lines of investigation as mentioned in this paper, which have shown the importance of epithelial barrier function, and innate and adaptive immunity in disease pathogenesis.
Abstract: Recently, substantial advances in the understanding of the molecular pathogenesis of inflammatory bowel disease (IBD) have been made owing to three related lines of investigation. First, IBD has been found to be the most tractable of complex disorders for discovering susceptibility genes, and these have shown the importance of epithelial barrier function, and innate and adaptive immunity in disease pathogenesis. Second, efforts directed towards the identification of environmental factors implicate commensal bacteria (or their products), rather than conventional pathogens, as drivers of dysregulated immunity and IBD. Third, murine models, which exhibit many of the features of ulcerative colitis and seem to be bacteria-driven, have helped unravel the pathogenesis/mucosal immunopathology of IBD.

3,831 citations