Author

# Mats Viberg

Other affiliations: Linköping University, Blekinge Institute of Technology, Stanford University ...read more

Bio: Mats Viberg is an academic researcher from Chalmers University of Technology. The author has contributed to research in topic(s): Sensor array & Estimation theory. The author has an hindex of 41, co-authored 231 publication(s) receiving 11749 citation(s). Previous affiliations of Mats Viberg include Linköping University & Blekinge Institute of Technology.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: The article consists of background material and of the basic problem formulation, and introduces spectral-based algorithmic solutions to the signal parameter estimation problem and contrast these suboptimal solutions to parametric methods.

Abstract: The quintessential goal of sensor array signal processing is the estimation of parameters by fusing temporal and spatial information, captured via sampling a wavefield with a set of judiciously placed antenna sensors. The wavefield is assumed to be generated by a finite number of emitters, and contains information about signal parameters characterizing the emitters. A review of the area of array processing is given. The focus is on parameter estimation methods, and many relevant problems are only briefly mentioned. We emphasize the relatively more recent subspace-based methods in relation to beamforming. The article consists of background material and of the basic problem formulation. Then we introduce spectral-based algorithmic solutions to the signal parameter estimation problem. We contrast these suboptimal solutions to parametric methods. Techniques derived from maximum likelihood principles as well as geometric arguments are covered. Later, a number of more specialized research topics are briefly reviewed. Then, we look at a number of real-world problems for which sensor array processing methods have been applied. We also include an example with real experimental data involving closely spaced emitters and highly correlated signals, as well as a manufacturing application example.

3,984 citations

••

TL;DR: It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method.

Abstract: Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace-fitting-based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method. The asymptotic distribution of the estimation error is derived for a general subspace weighting, and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals. >

699 citations

••

TL;DR: The subspace-based approach is found to perform competitive with respect to prediction-error methods, provided the system is properly excited.

Abstract: Subspace-based methods for system identification have attracted much attention during the past few years. This interest is due to the ability of providing accurate state-space models for multivariable linear systems directly from input-output data. The methods have their origin in classical state-space realization theory as developed in the 1960s. The main computational tools are the QR and the singular-value decompositions. Here, an overview of existing subspace-based techniques for system identification is given. The methods are grouped into the classes of realization-based and direct techniques. Similarities between different algorithms are pointed out, and their applicability is commented upon. We also discuss some recent ideas for improving and extending the methods. A simulation example is included for comparing different algorithms. The subspace-based approach is found to perform competitive with respect to prediction-error methods, provided the system is properly excited.

604 citations

••

TL;DR: In this article, a multidimensional estimation procedure that applies to arbitrary array structures and signal correlation is proposed, based on the recently introduced weighted subspace fitting (WSF) criterion and includes schemes for detecting the number of sources and estimating the signal parameters.

Abstract: The problem of signal parameter estimation of narrowband emitter signals impinging on an array of sensors is addressed. A multidimensional estimation procedure that applies to arbitrary array structures and signal correlation is proposed. The method is based on the recently introduced weighted subspace fitting (WSF) criterion and includes schemes for both detecting the number of sources and estimating the signal parameters. A Gauss-Newton-type method is presented for solving the multidimensional WSF and maximum-likelihood optimization problems. The global and local properties of the search procedure are investigated through computer simulations. Most methods require knowledge of the number of coherent/noncoherent signals present. A scheme for consistently estimating this is proposed based on an asymptotic analysis of the WSF cost function. The performance of the detection scheme is also investigated through simulations. >

492 citations

••

TL;DR: A maximum-likelihood approach for separating and estimating multiple synchronous digital signals arriving at an antenna array at a cell site and a signal detection technique based on the finite alphabet property that is different from a standard linear combiner are introduced.

Abstract: We propose a maximum-likelihood (ML) approach for separating and estimating multiple synchronous digital signals arriving at an antenna array at a cell site. The spatial response of the array is assumed to be known imprecisely or unknown. We exploit the finite alphabet property of digital signals to simultaneously estimate the array response and the symbol sequence for each signal. Uniqueness of the estimates is established for BPSK signals. We introduce a signal detection technique based on the finite alphabet property that is different from a standard linear combiner. Computationally efficient algorithms for both block and recursive estimation of the signals are presented. This new approach is applicable to an unknown array geometry and propagation environment, which is particularly useful In wireless communication systems. Simulation results demonstrate its promising performance.

371 citations

##### Cited by

More filters

••

Alcatel-Lucent

^{1}TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.

Abstract: This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bit-rates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multi-element array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver.
We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon‘s classical formula scales as one more bit/cycle for every 3 dB of signal-to-noise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99% of the channels the capacity is about 7, 19 and 88 bits/cycle respectively, while if n = 1 there is only about 1.2 bit/cycle at the 99% level. For say a symbol rate equal to the channel bandwith, since it is the bits/symbol/dimension that is relevant for signal constellations, these higher capacities are not unreasonable. The 19 bits/cycle for n = 4 amounts to 4.75 bits/symbol/dimension while 88 bits/cycle for n = 16 amounts to 5.5 bits/symbol/dimension. Standard approaches such as selection and optimum combining are seen to be deficient when compared to what will ultimately be possible. New codecs need to be invented to realize a hefty portion of the great capacity promised.

10,358 citations

Microsoft

^{1}TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.

Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

••

TL;DR: The article consists of background material and of the basic problem formulation, and introduces spectral-based algorithmic solutions to the signal parameter estimation problem and contrast these suboptimal solutions to parametric methods.

Abstract: The quintessential goal of sensor array signal processing is the estimation of parameters by fusing temporal and spatial information, captured via sampling a wavefield with a set of judiciously placed antenna sensors. The wavefield is assumed to be generated by a finite number of emitters, and contains information about signal parameters characterizing the emitters. A review of the area of array processing is given. The focus is on parameter estimation methods, and many relevant problems are only briefly mentioned. We emphasize the relatively more recent subspace-based methods in relation to beamforming. The article consists of background material and of the basic problem formulation. Then we introduce spectral-based algorithmic solutions to the signal parameter estimation problem. We contrast these suboptimal solutions to parametric methods. Techniques derived from maximum likelihood principles as well as geometric arguments are covered. Later, a number of more specialized research topics are briefly reviewed. Then, we look at a number of real-world problems for which sensor array processing methods have been applied. We also include an example with real experimental data involving closely spaced emitters and highly correlated signals, as well as a manufacturing application example.

3,984 citations

••

01 Nov 2007TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

3,865 citations

••

01 Jan 2011

TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.

Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,119 citations