scispace - formally typeset
Search or ask a question
Author

Matthew B. Grisham

Bio: Matthew B. Grisham is an academic researcher from Texas Tech University Health Sciences Center. The author has contributed to research in topics: Nitric oxide & Colitis. The author has an hindex of 92, co-authored 349 publications receiving 29002 citations. Previous affiliations of Matthew B. Grisham include University Medical Center New Orleans & LSU Health Sciences Center New Orleans.


Papers
More filters
Journal ArticleDOI
TL;DR: A critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species and proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results are presented.

1,423 citations

Journal ArticleDOI
TL;DR: The methods described in this review are not an exhaustive or comprehensive discussion of all methods available for the detection of NO but rather a description of the most commonly used and practical methods which allow accurate and sensitive quantification of NO products/metabolites in multiple biological matrices under normal physiological conditions.

766 citations

Journal ArticleDOI
TL;DR: The hypothesis that neutrophils, which accumulate in the mucosa in response to xanthine oxidase activation, mediate the oxyradical-dependent injury produced by reperfusion of the ischemic bowel is supported.
Abstract: Recent studies indicate that polymorphonuclear neutrophils (PMNs) infiltrate the intestinal mucosa during ischemia and after reperfusion. To determine whether PMNs mediate the increased microvascular permeability produced by ischemia-reperfusion (I/R) we treated cats with either saline, antineutrophil serum (ANS), or a monoclonal antibody specific for the beta-chain of the CD18 complex (MoAb 60.3) that prevents neutrophil adherence and extravasation. Intestinal microvascular permeability to plasma proteins was measured in control preparations (0.08 +/- 0.007), in preparations subjected to 1 h of ischemia then reperfusion (I/R, 0.32 +/- 0.02), I/R preparations treated with ANS (0.13 +/- 0.01), and I/R preparations treated with MoAb (0.12 +/- 0.003). Our results indicate that both PMN depletion (to less than 10% control) and prevention of PMN adherence significantly attenuate the increased microvascular permeability induced by I/R. These findings, coupled to previous results obtained from this model, support the hypothesis that neutrophils, which accumulate in the mucosa in response to xanthine oxidase activation, mediate the oxyradical-dependent injury produced by reperfusion of the ischemic bowel.

738 citations

Journal ArticleDOI
TL;DR: It is proposed that ischemia and reperfusion results in xanthine oxidase-generated, superoxide-dependent accumulation of inflammatory neutrophils in the mucosa where neutrophil-derived reactive oxygen metabolites mediate and/or exacerbate intestinal injury.
Abstract: A growing body of experimental data indicates that reactive oxygen metabolites such as superoxide, hydrogen peroxide, and hydroxyl radical may mediate the mucosal injury produced by reperfusion of ischemic intestine. Xanthine oxidase has been proposed as the primary source of these reduced O2 species because pretreatment with xanthine oxidase inhibitors such as allopurinol or pterin aldehyde prevent postischemic mucosal injury. Another potential source of oxygen radicals is the inflammatory neutrophil. To ascertain whether neutrophils could play a role in the pathogenesis of ischemia-reperfusion injury in the small bowel we examined the effect of ischemia and reperfusion on neutrophil infiltration and tissue levels of reduced glutathione, superoxide dismutase, and catalase. Our studies demonstrate that reperfusion of ischemic intestines results in a dramatic increase (1,800%) in neutrophil infiltration and a concurrent loss of reduced glutathione and superoxide dismutase of 60 and 30%, respectively. Catalase activity was unaffected by ischemia-reperfusion. Pretreatment with allopurinol or administration of superoxide dismutase prevented the influx of neutrophils and retarded the drop in reduced glutathione levels. These results suggest a relationship among xanthine oxidase-generated oxy radicals, neutrophil extravasation, and mucosal damage. We propose that ischemia and reperfusion results in xanthine oxidase-generated, superoxide-dependent accumulation of inflammatory neutrophils in the mucosa where neutrophil-derived reactive oxygen metabolites mediate and/or exacerbate intestinal injury.

724 citations

Journal ArticleDOI
TL;DR: Keeping adequate antioxidant status may provide a useful approach in attenuating the cellular injury and dysfunction observed in some inflammatory disorders.

657 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.

5,937 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: With increasing frequency, the human neutrophil is being implicated as a mediator of tissue-destructive events in inflammatory diseases ranging from rheumatoid arthritis and myocardial reperfusion injury to respiratory distress syndromes, blistering skin disorders, and ulcerative colitis.
Abstract: WITH increasing frequency, the human neutrophil is being implicated as a mediator of tissue-destructive events in inflammatory diseases ranging from rheumatoid arthritis and myocardial reperfusion injury to respiratory distress syndromes, blistering skin disorders, and ulcerative colitis.1 , 2 In each of these diseases, as well as a variety of other acute inflammatory disorders, important components of these pathologic processes are being linked to the neutrophil's ability to release a complex assortment of agents that can destroy normal cells and dissolve connective tissues. Although these toxins normally defend the host against invading microbes, the neutrophil has little intrinsic ability to differentiate between foreign . . .

4,349 citations