scispace - formally typeset
Search or ask a question
Author

Matthew Boutell

Bio: Matthew Boutell is an academic researcher from Rose-Hulman Institute of Technology. The author has contributed to research in topics: Contextual image classification & Digital image. The author has an hindex of 20, co-authored 41 publications receiving 2906 citations. Previous affiliations of Matthew Boutell include IEEE Computer Society & University of Rochester.

Papers
More filters
Journal ArticleDOI
TL;DR: A framework to handle semantic scene classification, where a natural scene may contain multiple objects such that the scene can be described by multiple class labels, is presented and appears to generalize to other classification problems of the same nature.

2,161 citations

Patent
13 Nov 2003
TL;DR: In this paper, a method for improving scene classification of a sequence of digital images is presented, which is based on the temporal context model for each image in the sequence of images captured in temporal succession and classifying each image individually based on information contained in the image alone.
Abstract: A method for improving scene classification of a sequence of digital images is disclosed herein. Such a method may include providing a sequence of images captured in temporal succession; (b) classifying each of the images individually based on information contained in the image alone to generate a first image classification; and (c) imposing a pre-determined temporal context model on the sequence of images to generate a final image classification for each image in the sequence.

109 citations

Journal ArticleDOI
TL;DR: Analysis of camera metadata statistics for images of each class revealed that metadata fields, such as exposure time, flash fired, and subject distance, are most discriminative for each problem.

107 citations

Proceedings ArticleDOI
TL;DR: A framework to handle semantic scene classification, where a natural scene may contain multiple objects such that the scene can be described by multiple class labels, is presented and appears to generalize to other classification problems of the same nature.
Abstract: In classic pattern recognition problems, classes are mutually exclusive by definition. Classification errors occur when the classes overlap in the feature space. We examine a different situation, occurring when the classes are, by definition, not mutually exclusive. Such problems arise in scene and document classification and in medical diagnosis. We present a framework to handle such problems and apply it to the problem of semantic scene classification, where a natural scene may contain multiple objects such that the scene can be described by multiple class labels (e.g., a field scene with a mountain in the background). Such a problem poses challenges to the classic pattern recognition paradigm and demands a different treatment. We discuss approaches for training and testing in this scenario and introduce new metrics for evaluating individual examples, class recall and precision, and overall accuracy. Experiments show that our methods are suitable for scene classification; furthermore, our work appears to generalize to other classification problems of the same nature.

95 citations

Proceedings ArticleDOI
27 Jun 2004
TL;DR: Analysis of camera metadata statistics for images of each class revealed that metadata fields, such as exposure time, flash fired, and subject distance, is most discriminative for both indoor-outdoor and sunset classification.
Abstract: Semantic scene classification based only on low-level vision cues has had limited success on unconstrained image sets. On the other hand, camera metadata related to capture conditions provides cues independent of the captured scene content that can be used to improve classification performance. We consider two problems: indoor-outdoor classification and sunset detection. Analysis of camera metadata statistics for images of each class revealed that metadata fields, such as exposure time, flash fired, and subject distance, is most discriminative for both indoor-outdoor and sunset classification. A Bayesian network is employed to fuse content-based and metadata cues in the probability domain and degrades gracefully, even when specific metadata inputs are missing (a practical concern). Finally, we provide extensive experimental results on the two problems, using content-based and metadata cues to demonstrate the efficacy of the proposed integrated scene classification scheme.

74 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: Experiments on three different real-world multi-label learning problems, i.e. Yeast gene functional analysis, natural scene classification and automatic web page categorization, show that ML-KNN achieves superior performance to some well-established multi- label learning algorithms.

2,832 citations

Journal ArticleDOI
TL;DR: The task of multi-label classification is introduced, the sparse related literature is organizes into a structured presentation and comparative experimental results of certain multilabel classification methods are performed.
Abstract: Nowadays, multi-label classification methods are increasingly required by modern applications, such as protein function classification, music categorization and semantic scene classification. This paper introduces the task of multi-label classification, organizes the sparse related literature into a structured presentation and performs comparative experimental results of certain multi-label classification methods. It also contributes the definition of concepts for the quantification of the multi-label nature of a data set.

2,592 citations

Journal ArticleDOI
TL;DR: This paper aims to provide a timely review on this area with emphasis on state-of-the-art multi-label learning algorithms with relevant analyses and discussions.
Abstract: Multi-label learning studies the problem where each example is represented by a single instance while associated with a set of labels simultaneously. During the past decade, significant amount of progresses have been made toward this emerging machine learning paradigm. This paper aims to provide a timely review on this area with emphasis on state-of-the-art multi-label learning algorithms. Firstly, fundamentals on multi-label learning including formal definition and evaluation metrics are given. Secondly and primarily, eight representative multi-label learning algorithms are scrutinized under common notations with relevant analyses and discussions. Thirdly, several related learning settings are briefly summarized. As a conclusion, online resources and open research problems on multi-label learning are outlined for reference purposes.

2,495 citations

Journal ArticleDOI
TL;DR: This paper presents a novel classifier chains method that can model label correlations while maintaining acceptable computational complexity, and illustrates the competitiveness of the chaining method against related and state-of-the-art methods, both in terms of predictive performance and time complexity.
Abstract: The widely known binary relevance method for multi-label classification, which considers each label as an independent binary problem, has often been overlooked in the literature due to the perceived inadequacy of not directly modelling label correlations. Most current methods invest considerable complexity to model interdependencies between labels. This paper shows that binary relevance-based methods have much to offer, and that high predictive performance can be obtained without impeding scalability to large datasets. We exemplify this with a novel classifier chains method that can model label correlations while maintaining acceptable computational complexity. We extend this approach further in an ensemble framework. An extensive empirical evaluation covers a broad range of multi-label datasets with a variety of evaluation metrics. The results illustrate the competitiveness of the chaining method against related and state-of-the-art methods, both in terms of predictive performance and time complexity.

2,046 citations