scispace - formally typeset
Search or ask a question
Author

Matthew C. Valenti

Other affiliations: Virginia Tech
Bio: Matthew C. Valenti is an academic researcher from West Virginia University. The author has contributed to research in topics: Turbo code & Fading. The author has an hindex of 31, co-authored 195 publications receiving 4905 citations. Previous affiliations of Matthew C. Valenti include Virginia Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: A practical approach to networks comprising multiple relays operating over orthogonal time slots is proposed based on a generalization of hybrid-automatic repeat request (ARQ), indicating a significant improvement in the energy-latency tradeoff when compared with conventional multihop protocols implemented as a cascade of point-to-point links.
Abstract: Wireless networks contain an inherent distributed spatial diversity that can be exploited by the use of relaying. Relay networks take advantage of the broadcast-oriented nature of radio and require node-based, rather than link-based protocols. Prior work on relay networks has studied performance limits either with unrealistic assumptions, complicated protocols, or only a single relay. In this paper, a practical approach to networks comprising multiple relays operating over orthogonal time slots is proposed based on a generalization of hybrid-automatic repeat request (ARQ). In contrast with conventional hybrid-ARQ, retransmitted packets do not need to come from the original source radio but could instead be sent by relays that overhear the transmission. An information theoretic framework is exposed that establishes the performance limits of such systems in a block fading environment, and numerical results are presented for some representative topologies and protocols. The results indicate a significant improvement in the energy-latency tradeoff when compared with conventional multihop protocols implemented as a cascade of point-to-point links.

548 citations

Journal ArticleDOI
TL;DR: A novel coding technique is proposed for the quasi-static fading relay channel, which indicates a combined diversity and coding gain, which is significant even for simple constituent codes.
Abstract: A novel coding technique is proposed for the quasi-static fading relay channel. The source broadcasts a recursive code to both relay and destination. The relay decodes, interleaves, and re-encodes the message prior to forwarding. Because the destination receives both codes in parallel, a distributed turbo code is embedded in the relay channel. Results indicate a combined diversity and coding gain, which is significant even for simple constituent codes.

411 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: In this article, the authors provide a tutorial introduction to phasor measurement units (PMU) when applied in a power system environment, provide an overview of communication alternatives for wide area measurement systems (WAMS), and compute the delay budget for each type of communication link.
Abstract: This paper provides a tutorial introduction to phasor measurement units (PMU) when applied in a power system environment, provides an overview of communication alternatives for wide area measurement systems (WAMS), and computes the delay budget for each type of communication link. The goal of this study is to provide data regarding the communication delay that can be incorporated into the analysis and simulation of WAMS.

349 citations

Journal ArticleDOI
TL;DR: Outage probability calculations and simulation results demonstrate the not unexpected significant performance gains of the proposed schemes over single-hop transmission, and, more importantly, demonstrate performance comparable to schemes requiring accurate symbol-level synchronization and orthogonal channelization.
Abstract: Cooperative diversity, which employs multiple nodes for the simultaneous relaying of a given packet in wireless ad hoc networks, has been shown to be an effective means of improving diversity, and, hence, mitigating the detrimental effects of multipath fading. However, in previously proposed cooperative diversity schemes, it has been assumed that coordination among the relays allows for accurate symbol-level timing synchronization at the destination and orthogonal channel allocation, which can be quite costly in terms of signaling overhead in mobile ad hoc networks, which are often defined by their lack of a fixed infrastructure and the difficulty of centralized control. In this paper, cooperative diversity schemes are considered that do not require symbol-level timing synchronization or orthogonal channelization between the relays employed. In the process, a novel minimum mean-squared error (MMSE) receiver is designed for combining disparate inputs in the multiple-relay channel. Outage probability calculations and simulation results demonstrate the not unexpected significant performance gains of the proposed schemes over single-hop transmission, and, more importantly, demonstrate performance comparable to schemes requiring accurate symbol-level synchronization and orthogonal channelization

320 citations

Journal ArticleDOI
TL;DR: A method for coherently detecting and decoding turbo-coded binary phase shift keying signals transmitted over frequency-flat fading channels is discussed and results show the influence of pilot symbol spacing, estimation filter size and type, and fade rate.
Abstract: A method for coherently detecting and decoding turbo-coded binary phase shift keying (BPSK) signals transmitted over frequency-flat fading channels is discussed. Estimates of the complex channel gain and variance of the additive noise are derived first from known pilot symbols and an estimation filter. After each iteration of turbo decoding, the channel estimates are refined using information fed back from the decoder. Both hard-decision and soft-decision feedback are considered and compared with three baseline turbo-coded systems: (1) a BPSK system that has perfect channel estimates; (2) a system that uses differential phase shift keying and hence needs no estimates; and (3) a system that performs channel estimation using pilot symbols but has no feedback path from decoder to estimator. Performance can be further improved by borrowing channel estimates from the previously decoded frame. Simulation results show the influence of pilot symbol spacing, estimation filter size and type, and fade rate. Performance within 0.49 and 1.16 dB of turbo-coded BPSK with perfect coherent detection is observed at a bit-error rate of 10/sup -4/ for normalized fade rates of f/sub d/T/sub s/=0.005 and f/sub d/T/sub s/=0.02, respectively.

307 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: It is shown analytically that the maximal rate achievable with error probability ¿ isclosely approximated by C - ¿(V/n) Q-1(¿) where C is the capacity, V is a characteristic of the channel referred to as channel dispersion, and Q is the complementary Gaussian cumulative distribution function.
Abstract: This paper investigates the maximal channel coding rate achievable at a given blocklength and error probability. For general classes of channels new achievability and converse bounds are given, which are tighter than existing bounds for wide ranges of parameters of interest, and lead to tight approximations of the maximal achievable rate for blocklengths n as short as 100. It is also shown analytically that the maximal rate achievable with error probability ? isclosely approximated by C - ?(V/n) Q-1(?) where C is the capacity, V is a characteristic of the channel referred to as channel dispersion , and Q is the complementary Gaussian cumulative distribution function.

3,242 citations

Journal ArticleDOI
TL;DR: A novel scheme that first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination and achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols.
Abstract: Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M relay nodes is required, such as those proposed by Laneman and Wornell (2003). The simplicity of the technique allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability, and efficiency in future 4G wireless systems.

3,153 citations

Journal ArticleDOI
TL;DR: An overview of the developments in cooperative communication, a new class of methods called cooperative communication has been proposed that enables single-antenna mobiles in a multi-user environment to share their antennas and generate a virtual multiple-antenn transmitter that allows them to achieve transmit diversity.
Abstract: Transmit diversity generally requires more than one antenna at the transmitter. However, many wireless devices are limited by size or hardware complexity to one antenna. Recently, a new class of methods called cooperative communication has been proposed that enables single-antenna mobiles in a multi-user environment to share their antennas and generate a virtual multiple-antenna transmitter that allows them to achieve transmit diversity. This article presents an overview of the developments in this burgeoning field.

3,130 citations

Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations