scispace - formally typeset
Search or ask a question
Author

Matthew D. Jeffriess

Other affiliations: University of Newcastle
Bio: Matthew D. Jeffriess is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Sprint & Team sport. The author has an hindex of 14, co-authored 28 publications receiving 814 citations. Previous affiliations of Matthew D. Jeffriess include University of Newcastle.

Papers
More filters
Journal ArticleDOI
TL;DR: Pearson's correlations (r) determined speed and jump performance relationships; stepwise regression ascertained jump predictors of speed (p ⩽ 0.05) and athletes with asymmetries similar to this study should not experience speed detriments.
Abstract: Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J Strength Cond Res 28(12): 3557-3566, 2014-The influence of unilateral jump performance, and between-leg asymmetries, on multidirectional speed has not been widely researched. This study analyzed how speed was related to unilateral jumping. Multidirectional speed was measured by 20-m sprint (0-5, 0-10, 0-20-m intervals), left- and right-leg turn 505, and modified T-test performance. Unilateral jump performance, and between-leg asymmetries, was measured by vertical (VJ), standing broad (SBJ), and lateral (LJ) jumping. Thirty male team-sport athletes (age = 22.60 ± 3.86 years; height = 1.80 ± 0.07 m; mass = 79.03 ± 12.26 kilograms) were recruited. Pearson's correlations (r) determined speed and jump performance relationships; stepwise regression ascertained jump predictors of speed (p ≤ 0.05). Subjects were divided into lesser and greater asymmetry groups from each jump condition. A 1-way analysis of variance found between-group differences (p ≤ 0.05). Left-leg VJ correlated with the 0-10 and 0-20-m intervals (r = -0.437 to -0.486). Right-leg VJ correlated with all sprint intervals and the T-test (r = -0.380 to -0.512). Left-leg SBJ and LJ correlated with all tests (r = -0.370 to -0.729). Right-leg SBJ and LJ related to all except the left-leg turn 505 (r = -0.415 to -0.650). Left-leg SBJ predicted the 20-m sprint. Left-leg LJ predicted the 505 and T-test. Regardless of the asymmetry used to form groups, no differences in speed were established. Horizontal and LJ performance related to multidirectional speed. Athletes with asymmetries similar to this study (VJ = ∼10%; SBJ = ∼3%; LJ = ∼5%) should not experience speed detriments.

177 citations

Journal Article
TL;DR: The CODAT was found to be a reliable change-of-direction speed assessment when considering intra-class correlations between two testing sessions, and the coefficient of variation between trials.
Abstract: Field sport coaches must use reliable and valid tests to assess change-of-direction speed in their athletes. Few tests feature linear sprinting with acute change- of-direction maneuvers. The Change-of-Direction and Acceleration Test (CODAT) was designed to assess field sport change-of-direction speed, and includes a linear 5-meter (m) sprint, 45° and 90° cuts, 3- m sprints to the left and right, and a linear 10-m sprint. This study analyzed the reliability and validity of this test, through comparisons to 20-m sprint (0-5, 0-10, 0-20 m intervals) and Illinois agility run (IAR) performance. Eighteen Australian footballers (age = 23.83 ± 7.04 yrs; height = 1.79 ± 0.06 m; mass = 85.36 ± 13.21 kg) were recruited. Following familiarization, subjects completed the 20-m sprint, CODAT, and IAR in 2 sessions, 48 hours apart. Intra-class correlation coefficients (ICC) assessed relative reliability. Absolute reliability was analyzed through paired samples t-tests (p ≤ 0.05) determining between-session differences. Typical error (TE), coefficient of variation (CV), and differences between the TE and smallest worthwhile change (SWC), also assessed absolute reliability and test usefulness. For the validity analysis, Pearson's correlations (p ≤ 0.05) analyzed between-test relationships. Results showed no between-session differences for any test (p = 0.19-0.86). CODAT time averaged ~6 s, and the ICC and CV equaled 0.84 and 3.0%, respectively. The homogeneous sample of Australian footballers meant that the CODAT's TE (0.19 s) exceeded the usual 0.2 x standard deviation (SD) SWC (0.10 s). However, the CODAT is capable of detecting moderate performance changes (SWC calculated as 0.5 x SD = 0.25 s). There was a near perfect correlation between the CODAT and IAR (r = 0.92), and very large correlations with the 20-m sprint (r = 0.75-0.76), suggesting that the CODAT was a valid change-of-direction speed test. Due to movement specificity, the CODAT has value for field sport assessment. Key pointsThe change-of-direction and acceleration test (CODAT) was designed specifically for field sport athletes from specific speed research, and data derived from time-motion analyses of sports such as rugby union, soccer, and Australian football. The CODAT features a linear 5-meter (m) sprint, 45° and 90° cuts and 3-m sprints to the left and right, and a linear 10-m sprint.The CODAT was found to be a reliable change-of-direction speed assessment when considering intra-class correlations between two testing sessions, and the coefficient of variation between trials. A homogeneous sample of Australian footballers resulted in absolute reliability limitations when considering differences between the typical error and smallest worthwhile change. However, the CODAT will detect moderate (0.5 times the test's standard deviation) changes in performance.The CODAT correlated with the Illinois agility run, highlighting that it does assess change-of-direction speed. There were also significant relationships with short sprint performance (i.e. 0-5 m and 0-10 m), demonstrating that linear acceleration is assessed within the CODAT, without the extended duration and therefore metabolic limitations of the IAR. Indeed, the average duration of the test (~6 seconds) is field sport-specific. Therefore, the CODAT could be used as an assessment of change-of-direction speed in field sport athletes.

113 citations

Journal ArticleDOI
TL;DR: Limits in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes are suggested.
Abstract: There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step (HS); in-line lunge (ILL); shoulder mobility; active straight-leg raise (ASLR); trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach (flexibility); 20-m sprint (linear speed); 505 with turns from each leg; modified T-test with movement to left and right (change-of- direction speed); bilateral and unilateral vertical and standing broad jumps; lateral jumps (leg power)). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman's correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes.

106 citations

Journal ArticleDOI
TL;DR: The FMS seems to have minimal capabilities for identifying movement deficiencies that could affect multidirectional speed and jumping in male team sport athletes.
Abstract: The Functional Movement Screen (FMS) includes lower-body focused tests (deep squat [DS], hurdle step, in-line lunge) that could assist in identifying movement deficiencies affecting multidirectional sprinting and jumping, which are important qualities for team sports. However, the hypothesized relationship with athletic performance lacks supportive research. This study investigated relationships between the lower-body focused screens and overall FMS performance and multidirectional speed and jumping capabilities in team sport athletes. Twenty-two healthy men were assessed in the FMS, and multidirectional speed (0- to 5-m, 0- to 10-m, 0- to 20-m sprint intervals; 505 and between-leg turn differences, modified T-test and differences between initial movement to the left or right); and bilateral and unilateral multidirectional jumping (vertical [VJ], standing long [SLJ], and lateral jump) tests. Pearson's correlations (r) were used to calculate relationships between screening scores and performance tests (p ≤ 0.05). After the determination of any screens relating to athletic performance, subjects were stratified into groups (3 = high-performing group; 2 = intermediate-performing group; 1 = low-performing group) to investigate movement compensations. A 1-way analysis of variance (p ≤ 0.05) determined any between-group differences. There were few significant correlations. The DS did moderately correlate with between-leg 505 difference (r = -0.423), and bilateral VJ (r = -0.428) and SLJ (r = -0.457). When stratified into groups according to DS score, high performers had a 13% greater SLJ when compared with intermediate performers, which was the only significant result. The FMS seems to have minimal capabilities for identifying movement deficiencies that could affect multidirectional speed and jumping in male team sport athletes.

64 citations

Journal ArticleDOI
TL;DR: The results reemphasized that planned and reactive agility are separate physical qualities and to distinguish between male basketball players of different ability levels, agility tests should include a perceptual and decision-making component.
Abstract: Context: Research indicates that planned and reactive agility are different athletic skills. These skills have not been adequately assessed in male basketball players. Purpose: To define whether 10-m-sprint performance and planned and reactive agility measured by the Y-shaped agility test can discriminate between semiprofessional and amateur basketball players. Methods: Ten semiprofessional and 10 amateur basketball players completed 10-m sprints and planned- and reactive-agility tests. The Y-shaped agility test involved subjects sprinting 5 m through a trigger timing gate, followed by a 45° cut and 5-m sprint to the left or right through a target gate. In the planned condition, subjects knew the cut direction. For reactive trials, subjects visually scanned to find the illuminated gate. A 1-way analysis of variance (P < .05) determined between-groups differences. Data were pooled (N = 20) for a correlation analysis (P < .05). Results: The reactive tests differentiated between the groups; semiprofessional ...

61 citations


Cited by
More filters
Journal Article
TL;DR: Definition: To what extent does the study allow us to draw conclusions about a causal effect between two or more constructs?
Abstract: Definition: To what extent does the study allow us to draw conclusions about a causal effect between two or more constructs? Issues: Selection, maturation, history, mortality, testing, regression towrd the mean, selection by maturation, treatment by mortality, treatment by testing, measured treatment variables Increase: Eliminate the threats, above all do experimental manipulations, random assignment, and counterbalancing.

2,006 citations

01 Jan 2007
TL;DR: This study has provided an indication of the different physical demands of different playing positions in FA Premier League match-play through assessment of movements performed by players.
Abstract: The purpose of this study was to evaluate the physical demands of English Football Association (FA) Premier League soccer of three different positional classifications (defender, midfielder and striker). Computerised time-motion video-analysis using the Bloomfield Movement Classification was undertaken on the purposeful movement (PM) performed by 55 players. Recognition of PM had a good inter-tester reliability strength of agreement (κ = 0.7277). Players spent 40.6 ± 10.0% of the match performing PM. Position had a significant influence on %PM time spent sprinting, running, shuffling, skipping and standing still (p 0.05). Players spent 48.7 ± 9.2% of PM time moving in a directly forward direction, 20.6 ± 6.8% not moving in any direction and the remainder of PM time moving backward, lateral, diagonal and arced directions. The players performed the equivalent of 726 ± 203 turns during the match; 609 ± 193 of these being of 0° to 90° to the left or right. Players were involved in the equivalent of 111 ± 77 on the ball movement activities per match with no significant differences between the positions for total involvement in on the ball activity (p > 0.05). This study has provided an indication of the different physical demands of different playing positions in FA Premier League match-play through assessment of movements performed by players.

637 citations

Journal ArticleDOI
TL;DR: This consensus statement was to present and synthesise current evidence to make recommendations for return to sport decision-making, clinical practice and future research directions related to returning athletes to sport.
Abstract: Deciding when to return to sport after injury is complex and multifactorial-an exercise in risk management. Return to sport decisions are made every day by clinicians, athletes and coaches, ideally in a collaborative way. The purpose of this consensus statement was to present and synthesise current evidence to make recommendations for return to sport decision-making, clinical practice and future research directions related to returning athletes to sport. A half day meeting was held in Bern, Switzerland, after the First World Congress in Sports Physical Therapy. 17 expert clinicians participated. 4 main sections were initially agreed upon, then participants elected to join 1 of the 4 groups-each group focused on 1 section of the consensus statement. Participants in each group discussed and summarised the key issues for their section before the 17-member group met again for discussion to reach consensus on the content of the 4 sections. Return to sport is not a decision taken in isolation at the end of the recovery and rehabilitation process. Instead, return to sport should be viewed as a continuum, paralleled with recovery and rehabilitation. Biopsychosocial models may help the clinician make sense of individual factors that may influence the athlete's return to sport, and the Strategic Assessment of Risk and Risk Tolerance framework may help decision-makers synthesise information to make an optimal return to sport decision. Research evidence to support return to sport decisions in clinical practice is scarce. Future research should focus on a standardised approach to defining, measuring and reporting return to sport outcomes, and identifying valuable prognostic factors for returning to sport.

477 citations

Journal ArticleDOI
TL;DR: The validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running is supported.
Abstract: This study aimed to validate a simple field method for determining force– and power–velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatio-temporal data. Force– and power–velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force–velocity relationships ; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

307 citations

Journal ArticleDOI
TL;DR: The findings of this systematic review indicate that inter-limb differences in strength may be detrimental to jumping, kicking and cycling performance and further research is warranted to understand the mechanisms that underpin inter- Limb differences and the magnitude of performance changes that can be accounted for by these asymmetries.
Abstract: The prevalence of inter-limb asymmetries has been reported in numerous studies across a wide range of sports and physical qualities; however, few have analysed their effects on physical and sports performance. A systematic review of the literature was undertaken using the Medline and SPORT Discus databases, with all articles required to meet a specified criteria based on a quality review. Eighteen articles met the inclusion criteria, relating participant asymmetry scores to physical and sports performance measures. The findings of this systematic review indicate that inter-limb differences in strength may be detrimental to jumping, kicking and cycling performance. When inter-limb asymmetries are quantified during jumping based exercises, they have been primarily used to examine their association with change of direction speed with mixed findings. Inter-limb asymmetries have also been quantified in anthropometry, sprinting, dynamic balance and sport-specific actions, again with inconsistent findings. However, all results have been reported using associative analysis with physical or sport performance metrics with no randomised controlled trials included. Further research is warranted to understand the mechanisms that underpin inter-limb differences and the magnitude of performance changes that can be accounted for by these asymmetries.

229 citations