scispace - formally typeset
Search or ask a question
Author

Matthew D. McCluskey

Bio: Matthew D. McCluskey is an academic researcher from Washington State University. The author has contributed to research in topics: Infrared spectroscopy & Hydrostatic pressure. The author has an hindex of 37, co-authored 195 publications receiving 5396 citations. Previous affiliations of Matthew D. McCluskey include Lawrence Berkeley National Laboratory & University of Virginia.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of defects in ZnO is presented in this paper, with an emphasis on the physical properties of point defects in bulk crystals, and the problem of acceptor dopants remains a key challenge.
Abstract: Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-t...

995 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on processes that can be analyzed or understood in terms of configuration coordinate diagrams of defects in their different charge states, such as light absorption, luminescence, and nonradiative capture of charge carriers.
Abstract: Point defects affect or even completely determine physical and chemical properties of semiconductors Characterization of point defects based on experimental techniques alone is often inconclusive In such cases, the combination of experiment and theory is crucial to gain understanding of the system studied In this tutorial, we explain how and when such comparison provides new understanding of the defect physics More specifically, we focus on processes that can be analyzed or understood in terms of configuration coordinate diagrams of defects in their different charge states These processes include light absorption, luminescence, and nonradiative capture of charge carriers Recent theoretical developments to describe these processes are reviewed

286 citations

Journal ArticleDOI
TL;DR: In this paper, first-principles calculations for the band gap as a function of alloy composition were performed and it was shown that the bowing is strongly composition dependent, and the calculated bowing parameter is b=3.5
Abstract: Band gap measurements have been performed on strained InxGa1−xN epilayers with x⩽0.12. The experimental data indicate that the bowing of the band gap is much larger than commonly assumed. We have performed first-principles calculations for the band gap as a function of alloy composition and find that the bowing is strongly composition dependent. At x=0.125 the calculated bowing parameter is b=3.5 eV, in good agreement with the experimental values.

196 citations

Journal ArticleDOI
TL;DR: In this paper, local vibrational modes (LVMs) were reported for Mg-doped GaN grown by metalorganic chemical vapor deposition, and the stretch modes of the MgH and MgD complexes in GaN were assigned to the stretch mode with the vibrational frequencies indicative of a strong N−H bond.
Abstract: Local vibrational modes (LVMs) are reported for Mg‐doped GaN grown by metalorganic chemical vapor deposition. Hetero‐epitaxial layers of GaN:Mg, either as‐grown, thermally activated, or deuterated, were investigated with low‐temperature, Fourier‐transform infrared absorption spectroscopy. The as‐grown material, which was semi‐insulating, exhibits a LVM at 3125 cm−1. Thermal annealing increases the p‐type conductivity, as established with Hall effect measurements, and proportionally reduces the intensity of this LVM. Deuteration of the activated material creates a LVM at 2321 cm−1. The isotopic shift establishes the presence of hydrogen in the vibrating complex. The new LVMs are assigned to the stretch modes of the Mg–H and Mg–D complexes in GaN, with the vibrational frequencies indicative of a strong N–H bond as recently proposed from total‐energy calculations.

179 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used IR spectroscopy to measure local vibrational modes in ZnO annealed in hydrogen gas and showed that an oxygen-hydrogen stretch mode is observed at 3326.3 cm−1 at a temperature of 8 K, in good agreement with theoretical predictions for hydrogen in an antibonding configuration.
Abstract: Zinc oxide (ZnO) is a wide-band gap semiconductor that has attracted tremendous interest for optical, electronic, and mechanical applications. First-principles calculations by [C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)] have predicted that hydrogen impurities in ZnO are shallow donors. In order to determine the microscopic structure of hydrogen donors, we have used IR spectroscopy to measure local vibrational modes in ZnO annealed in hydrogen gas. An oxygen–hydrogen stretch mode is observed at 3326.3 cm−1 at a temperature of 8 K, in good agreement with the theoretical predictions for hydrogen in an antibonding configuration. The results of this study suggest that hydrogen annealing may be a practical method for controlled n-type doping of ZnO.

177 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations