scispace - formally typeset
Search or ask a question
Author

Matthew Ferry

Other affiliations: Broad Institute, Harvard University
Bio: Matthew Ferry is an academic researcher from Howard Hughes Medical Institute. The author has contributed to research in topics: Population & Bronze Age. The author has an hindex of 15, co-authored 24 publications receiving 1823 citations. Previous affiliations of Matthew Ferry include Broad Institute & Harvard University.

Papers
More filters
Journal ArticleDOI
Iñigo Olalde1, Selina Brace2, Morten E. Allentoft3, Ian Armit4  +166 moreInstitutions (69)
08 Mar 2018-Nature
TL;DR: Genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans is presented, finding limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and excludes migration as an important mechanism of spread between these two regions.
Abstract: From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.

479 citations

Journal ArticleDOI
Iain Mathieson1, Songül Alpaslan-Roodenberg1, Cosimo Posth2, Cosimo Posth3, Anna Szécsényi-Nagy4, Nadin Rohland1, Swapan Mallick1, Swapan Mallick5, Iñigo Olalde1, Nasreen Broomandkhoshbacht1, Nasreen Broomandkhoshbacht5, Francesca Candilio6, Olivia Cheronet6, Olivia Cheronet7, Daniel Fernandes8, Daniel Fernandes6, Matthew Ferry5, Matthew Ferry1, Beatriz Gamarra6, Gloria G. Fortes9, Wolfgang Haak2, Wolfgang Haak10, Eadaoin Harney1, Eadaoin Harney5, Eppie R. Jones11, Eppie R. Jones12, Denise Keating6, Ben Krause-Kyora2, Isil Kucukkalipci3, Megan Michel1, Megan Michel5, Alissa Mittnik2, Alissa Mittnik3, Kathrin Nägele2, Mario Novak6, Jonas Oppenheimer1, Jonas Oppenheimer5, Nick Patterson13, Saskia Pfrengle3, Kendra Sirak14, Kendra Sirak6, Kristin Stewardson1, Kristin Stewardson5, Stefania Vai15, Stefan Alexandrov16, Kurt W. Alt17, Radian Andreescu, Dragana Antonović, Abigail Ash6, Nadezhda Atanassova16, Krum Bacvarov16, Mende Balázs Gusztáv4, Hervé Bocherens3, Michael Bolus3, Adina Boroneanţ18, Yavor Boyadzhiev16, Alicja Budnik, Josip Burmaz, Stefan Chohadzhiev, Nicholas J. Conard3, Richard Cottiaux, Maja Čuka, Christophe Cupillard19, Dorothée G. Drucker3, Nedko Elenski, Michael Francken3, Borislava Galabova, Georgi Ganetsovski, Bernard Gély, Tamás Hajdu20, Veneta Handzhyiska21, Katerina Harvati3, Thomas Higham22, Stanislav Iliev, Ivor Janković23, Ivor Karavanić23, Ivor Karavanić24, Douglas J. Kennett25, Darko Komšo, Alexandra Kozak26, Damian Labuda27, Martina Lari15, Cătălin Lazăr28, Maleen Leppek29, Krassimir Leshtakov21, Domenico Lo Vetro15, Dženi Los, Ivaylo Lozanov21, Maria Malina3, Fabio Martini15, Kath McSweeney30, Harald Meller, Marko Menđušić, Pavel Mirea, Vyacheslav Moiseyev, Vanya Petrova21, T. Douglas Price31, Angela Simalcsik18, Luca Sineo32, Mario Šlaus33, Vladimir Slavchev, Petar Stanev, Andrej Starović, Tamás Szeniczey20, Sahra Talamo2, Maria Teschler-Nicola7, Maria Teschler-Nicola34, Corinne Thevenet, Ivan Valchev21, Frédérique Valentin19, Sergey Vasilyev35, Fanica Veljanovska, Svetlana Venelinova, Elizaveta Veselovskaya35, Bence Viola36, Bence Viola35, Cristian Virag, Joško Zaninović, Steve Zäuner, Philipp W. Stockhammer2, Philipp W. Stockhammer29, Giulio Catalano32, Raiko Krauß3, David Caramelli15, Gunita Zariņa37, Bisserka Gaydarska38, Malcolm Lillie39, Alexey G. Nikitin40, Inna Potekhina26, Anastasia Papathanasiou, Dusan Boric41, Clive Bonsall30, Johannes Krause3, Johannes Krause2, Ron Pinhasi6, Ron Pinhasi7, David Reich13, David Reich5, David Reich1 
08 Mar 2018-Nature
TL;DR: It is shown that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.
Abstract: Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to und ...

447 citations

Journal ArticleDOI
16 Nov 2017-Nature
TL;DR: Investigating the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples finds that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time.
Abstract: In European Neolithic populations, the arrival of farmers prompted admixture with local hunter-gatherers over many centuries, resulting in distinct signatures in each region due to a complex series of interactions. David Reich and colleagues analyse genome-wide data from 180 individuals from the Neolithic and Chalcolithic periods of Hungary, Germany and Spain to study the population dynamics of Neolithization in European prehistory. They examine how gene flow reshaped European populations during the Neolithic period, including pervasive admixture—the interbreeding between previously isolated populations—between groups with different ancestry profiles. In each region, they find that the arrival of farmers prompted admixture with local hunter-gatherers, over the course of 3,000 years. Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants1,2,3,4,5,6,7,8 who received a limited amount of admixture from resident hunter-gatherers3,4,5,9. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000–2900 bc, n = 100), Germany (5500–3000 bc, n = 42) and Spain (5500–2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.

278 citations

Journal ArticleDOI
21 Sep 2017-Cell
TL;DR: The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others.

272 citations

Journal ArticleDOI
Cosimo Posth1, Cosimo Posth2, Nathan Nakatsuka3, Nathan Nakatsuka4, Iosif Lazaridis3, Pontus Skoglund3, Pontus Skoglund5, Swapan Mallick6, Swapan Mallick7, Swapan Mallick3, Thiseas Christos Lamnidis1, Nadin Rohland3, Kathrin Nägele1, Nicole Adamski3, Nicole Adamski6, Emilie Bertolini8, Nasreen Broomandkhoshbacht3, Nasreen Broomandkhoshbacht6, Alan Cooper9, Brendan J. Culleton10, Tiago Ferraz1, Tiago Ferraz11, Matthew Ferry6, Matthew Ferry3, Anja Furtwängler2, Wolfgang Haak1, Kelly M. Harkins12, Thomas K. Harper10, Tábita Hünemeier11, Ann Marie Lawson6, Ann Marie Lawson3, Bastien Llamas9, Megan Michel6, Megan Michel3, Elizabeth A. Nelson1, Elizabeth A. Nelson2, Jonas Oppenheimer6, Jonas Oppenheimer3, Nick Patterson7, Stephan Schiffels1, Jakob Sedig3, Kristin Stewardson3, Kristin Stewardson6, Sahra Talamo1, Chuan-Chao Wang1, Chuan-Chao Wang13, Jean-Jacques Hublin1, Mark Hubbe14, Mark Hubbe15, Katerina Harvati2, Amalia Nuevo Delaunay, Judith Beier2, Michael Francken2, Peter Kaulicke16, Hugo Reyes-Centeno2, Kurt Rademaker17, Willa R. Trask, Mark Robinson18, Said M. Gutierrez, Keith M. Prufer19, Domingo C. Salazar-García20, Domingo C. Salazar-García1, Eliane N. Chim11, Lisiane Müller Plumm Gomes11, Marcony Alves11, Andersen Liryo21, Mariana Inglez11, Rodrigo Elias Oliveira11, Danilo V. Bernardo22, Alberto Barioni11, Veronica Wesolowski11, Nahuel A. Scheifler23, Mario A. Rivera24, Mario A. Rivera25, Cláudia Regina Plens26, Pablo Geronimo Messineo23, Levy Figuti11, Daniel Corach27, Clara Scabuzzo28, Sabine Eggers11, Sabine Eggers29, Paulo DeBlasis11, Markus Reindel30, César Méndez, Gustavo G. Politis23, Elsa Tomasto-Cagigao16, Douglas J. Kennett10, André Strauss, Lars Fehren-Schmitz12, Johannes Krause2, Johannes Krause1, David Reich6, David Reich3, David Reich7 
15 Nov 2018-Cell
TL;DR: Genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone suggests a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions.

222 citations


Cited by
More filters
Journal ArticleDOI
Daniel Taliun1, Daniel N. Harris2, Michael D. Kessler2, Jedidiah Carlson1  +202 moreInstitutions (61)
10 Feb 2021-Nature
TL;DR: The Trans-Omics for Precision Medicine (TOPMed) project as discussed by the authors aims to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases.
Abstract: The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1 In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals) These rare variants provide insights into mutational processes and recent human evolutionary history The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 001% The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history

801 citations

Posted ContentDOI
Daniel Taliun1, Daniel N. Harris2, Michael D. Kessler2, Jedidiah Carlson1  +191 moreInstitutions (61)
06 Mar 2019-bioRxiv
TL;DR: The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation as well as resources and early insights from the sequence data.
Abstract: Summary paragraph The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency

662 citations

Journal ArticleDOI
Iñigo Olalde1, Selina Brace2, Morten E. Allentoft3, Ian Armit4  +166 moreInstitutions (69)
08 Mar 2018-Nature
TL;DR: Genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans is presented, finding limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and excludes migration as an important mechanism of spread between these two regions.
Abstract: From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.

479 citations

Journal ArticleDOI
Iain Mathieson1, Songül Alpaslan-Roodenberg1, Cosimo Posth2, Cosimo Posth3, Anna Szécsényi-Nagy4, Nadin Rohland1, Swapan Mallick5, Swapan Mallick1, Iñigo Olalde1, Nasreen Broomandkhoshbacht5, Nasreen Broomandkhoshbacht1, Francesca Candilio6, Olivia Cheronet6, Olivia Cheronet7, Daniel Fernandes8, Daniel Fernandes6, Matthew Ferry5, Matthew Ferry1, Beatriz Gamarra6, Gloria G. Fortes9, Wolfgang Haak10, Wolfgang Haak3, Eadaoin Harney5, Eadaoin Harney1, Eppie R. Jones11, Eppie R. Jones12, Denise Keating6, Ben Krause-Kyora3, Isil Kucukkalipci2, Megan Michel1, Megan Michel5, Alissa Mittnik2, Alissa Mittnik3, Kathrin Nägele3, Mario Novak6, Jonas Oppenheimer1, Jonas Oppenheimer5, Nick Patterson13, Saskia Pfrengle2, Kendra Sirak6, Kendra Sirak14, Kristin Stewardson1, Kristin Stewardson5, Stefania Vai15, Stefan Alexandrov16, Kurt W. Alt17, Radian Andreescu, Dragana Antonović, Abigail Ash6, Nadezhda Atanassova16, Krum Bacvarov16, Mende Balázs Gusztáv4, Hervé Bocherens2, Michael Bolus2, Adina Boroneanţ18, Yavor Boyadzhiev16, Alicja Budnik, Josip Burmaz, Stefan Chohadzhiev, Nicholas J. Conard2, Richard Cottiaux, Maja Čuka, Christophe Cupillard19, Dorothée G. Drucker2, Nedko Elenski, Michael Francken2, Borislava Galabova, Georgi Ganetsovski, Bernard Gély, Tamás Hajdu20, Veneta Handzhyiska21, Katerina Harvati2, Thomas Higham22, Stanislav Iliev, Ivor Janković23, Ivor Karavanić24, Ivor Karavanić23, Douglas J. Kennett25, Darko Komšo, Alexandra Kozak26, Damian Labuda27, Martina Lari15, Cătălin Lazăr28, Maleen Leppek29, Krassimir Leshtakov21, Domenico Lo Vetro15, Dženi Los, Ivaylo Lozanov21, Maria Malina2, Fabio Martini15, Kath McSweeney30, Harald Meller, Marko Menđušić, Pavel Mirea, Vyacheslav Moiseyev, Vanya Petrova21, T. Douglas Price31, Angela Simalcsik18, Luca Sineo32, Mario Šlaus33, Vladimir Slavchev, Petar Stanev, Andrej Starović, Tamás Szeniczey20, Sahra Talamo3, Maria Teschler-Nicola7, Maria Teschler-Nicola34, Corinne Thevenet, Ivan Valchev21, Frédérique Valentin19, Sergey Vasilyev35, Fanica Veljanovska, Svetlana Venelinova, Elizaveta Veselovskaya35, Bence Viola35, Bence Viola36, Cristian Virag, Joško Zaninović, Steve Zäuner, Philipp W. Stockhammer3, Philipp W. Stockhammer29, Giulio Catalano32, Raiko Krauß2, David Caramelli15, Gunita Zariņa37, Bisserka Gaydarska38, Malcolm Lillie39, Alexey G. Nikitin40, Inna Potekhina26, Anastasia Papathanasiou, Dusan Boric41, Clive Bonsall30, Johannes Krause2, Johannes Krause3, Ron Pinhasi7, Ron Pinhasi6, David Reich5, David Reich1, David Reich13 
08 Mar 2018-Nature
TL;DR: It is shown that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.
Abstract: Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to und ...

447 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick2, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger1, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan50, Hovhannes Sahakyan38, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua57, Pierre Zalloua2, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems62, Richard Villems43, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich1, David Reich2, Johannes Krause4, Johannes Krause3 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Tarapacá47, University of Chile48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations