scispace - formally typeset
Search or ask a question
Author

Matthew Frank Brown

Bio: Matthew Frank Brown is an academic researcher from Pfizer. The author has contributed to research in topics: Hydroxamic acid & Janus kinase. The author has an hindex of 28, co-authored 109 publications receiving 3247 citations.


Papers
More filters
Journal ArticleDOI
31 Oct 2003-Science
TL;DR: It is believed JAK3 blockade by CP-690,550 has potential for therapeutically desirable immunosuppression in human organ transplantation and in other clinical settings.
Abstract: Because of its requirement for signaling by multiple cytokines, Janus kinase 3 (JAK3) is an excellent target for clinical immunosuppression. We report the development of a specific, orally active inhibitor of JAK3, CP-690,550, that significantly prolonged survival in a murine model of heart transplantation and in cynomolgus monkeys receiving kidney transplants. CP-690,550 treatment was not associated with hypertension, hyperlipidemia, or lymphoproliferative disease. On the basis of these preclinical results, we believe JAK3 blockade by CP-690,550 has potential for therapeutically desirable immunosuppression in human organ transplantation and in other clinical settings.

681 citations

Journal ArticleDOI
TL;DR: Optimization within this chemical series led to identification of CP-690,550 1, a potential first-in-class JAK inhibitor for treatment of autoimmune diseases and organ transplant rejection.
Abstract: There is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation. The Pfizer compound library was screened against the catalytic domain of JAK3 resulting in the identification of a pyrrolopyrimidine-based series of inhibitors represented by CP-352,664 (2a). Synthetic analogues of 2a were screened against the JAK enzymes and evaluated in an IL-2 induced T cell blast proliferation assay. Select compounds were evaluated in rodent efficacy models of allograft rejection and destructive inflammatory arthritis. Optimization within this chemical series led to identification of CP-690,550 1, a potential first-in-class JAK inhibitor for...

332 citations

Journal ArticleDOI
TL;DR: It is shown that within a Bruton’s tyrosine kinase/cereblon PROTAC system, potent knockdown correlates with alleviation of steric clashes in the absence of thermodynamic cooperativity, which broadens the scope of PROTAC applications and affects fundamental design criteria across the field.
Abstract: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously “undruggable” targets. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. Here we employ a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton’s tyrosine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell maturation. Members of an 11-compound PROTAC library were investigated for their ability to form binary and ternary complexes with BTK and cereblon (CRBN, an E3 ligase component). Results were extended to measure effects on BTK–CRBN cooperative interactions as well as in vitro and in vivo BTK degradation. Our data show that alleviation of steric clashes between BTK and CRBN by modulating PROTAC linker length within this chemical series allows potent BTK degradation in the absence of thermodynamic cooperativity.

249 citations

Journal ArticleDOI
TL;DR: Methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles are described.
Abstract: Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles. We also describe a computational method for predicting electrophilic reactivity, which taken together can be applied to the prospective design of thiol-reactive covalent inhibitors.

235 citations

Journal ArticleDOI
TL;DR: In this article, a microwave-promoted one-pot, two-step reaction sequence combining anthranilic acids, carboxylic acids, and amines was proposed for 2,3-disubstituted 3 H -quinazolin-4-ones.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This tutorial review provides a sampling of renowned fluorinated drugs and their mode of action with a discussion clarifying the role and impact of fluorine substitution on drug potency.
Abstract: It has become evident that fluorinated compounds have a remarkable record in medicinal chemistry and will play a continuing role in providing lead compounds for therapeutic applications. This tutorial review provides a sampling of renowned fluorinated drugs and their mode of action with a discussion clarifying the role and impact of fluorine substitution on drug potency.

4,664 citations

01 Sep 2008
TL;DR: The Methodology used to Prepare the Guideline Epidemiology Incidence Etiology and Recommendations for Assessing Response to Therapy Suggested Performance Indicators is summarized.
Abstract: Executive Summary Introduction Methodology Used to Prepare the Guideline Epidemiology Incidence Etiology Major Epidemiologic Points Pathogenesis Major Points for Pathogenesis Modifiable Risk Factors Intubation and Mechanical Ventilation Aspiration, Body Position, and Enteral Feeding Modulation of Colonization: Oral Antiseptics and Antibiotics Stress Bleeding Prophylaxis, Transfusion, and Glucose Control Major Points and Recommendations for Modifiable Risk Factors Diagnostic Testing Major Points and Recommendations for Diagnosis Diagnostic Strategies and Approaches Clinical Strategy Bacteriologic Strategy Recommended Diagnostic Strategy Major Points and Recommendations for Comparing Diagnostic Strategies Antibiotic Treatment of Hospital-acquired Pneumonia General Approach Initial Empiric Antibiotic Therapy Appropriate Antibiotic Selection and Adequate Dosing Local Instillation and Aerosolized Antibiotics Combination versus Monotherapy Duration of Therapy Major Points and Recommendations for Optimal Antibiotic Therapy Specific Antibiotic Regimens Antibiotic Heterogeneity and Antibiotic Cycling Response to Therapy Modification of Empiric Antibiotic Regimens Defining the Normal Pattern of Resolution Reasons for Deterioration or Nonresolution Evaluation of the Nonresponding Patient Major Points and Recommendations for Assessing Response to Therapy Suggested Performance Indicators

2,961 citations

DOI
05 Nov 2009
TL;DR: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此第一印象中拟诊 结核5例,为此应引起临床对本 病诊
Abstract: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此病误诊的文献,误诊率高达63.2%,当然有误诊就会有误治,如孙永昌等~([2])报道26例结节病在影像学检查诊断的第一印象中拟诊结核5例,其中就有2例完成规范的抗结核治疗,为此应引起临床对本病诊治的重视。

1,821 citations

Journal ArticleDOI
TL;DR: Based on the current knowledge of the role of cytokines in atherosclerosis, some novel therapeutic strategies to combat this disease are proposed and the potential of circulating cytokine levels as biomarkers of coronary artery disease is discussed.
Abstract: Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.

1,587 citations

Journal ArticleDOI
TL;DR: This review considers the use of immunosuppressive drugs in organ transplantation, focusing on renal transplantation.
Abstract: Suppression of allograft rejection is central to successful organ transplantation; thus, immunosuppressive agents are crucial for successful allograft function. Immunosuppressive drugs are used for induction (intense immunosuppression in the initial days after transplantation), maintenance, and reversal of established rejection. This review considers the use of immunosuppressive drugs in organ transplantation, focusing on renal transplantation.

1,342 citations