scispace - formally typeset
Search or ask a question
Author

Matthew H. Crouthamel

Other affiliations: Novartis
Bio: Matthew H. Crouthamel is an academic researcher from University of Washington. The author has contributed to research in topics: Vascular smooth muscle & Phosphorylation. The author has an hindex of 9, co-authored 10 publications receiving 1259 citations. Previous affiliations of Matthew H. Crouthamel include Novartis.

Papers
More filters
Journal ArticleDOI
TL;DR: A major role is suggested for elevated P in promoting osteogenic/chondrogenic differentiation of VSMC, whereas elevated Ca has a predominant role in promoting VSMC apoptosis and vesicle release.
Abstract: Vascular calcification contributes to the high risk of cardiovascular mortality in chronic kidney disease (CKD) patients. Dysregulation of calcium (Ca) and phosphate (P) metabolism is common in CKD patients and drives vascular calcification. In this article, we review the physiological regulatory mechanisms for Ca and P homeostasis and the basis for their dysregulation in CKD. In addition, we highlight recent findings indicating that elevated Ca and P have direct effects on vascular smooth muscle cells (VSMCs) that promote vascular calcification, including stimulation of osteogenic/chondrogenic differentiation, vesicle release, apoptosis, loss of inhibitors, and extracellular matrix degradation. These studies suggest a major role for elevated P in promoting osteogenic/chondrogenic differentiation of VSMC, whereas elevated Ca has a predominant role in promoting VSMC apoptosis and vesicle release. Furthermore, the effects of elevated Ca and P are synergistic, providing a major stimulus for vascular calcification in CKD. Unraveling the complex regulatory pathways that mediate the effects of both Ca and P on VSMCs will ultimately provide novel targets and therapies to limit the destructive effects of vascular calcification in CKD patients.

759 citations

Journal ArticleDOI
TL;DR: Whereas elevated phosphate concentrations induced calcification in vitro, FGF23 had no effect on phosphate uptake or phosphate-induced calcification regardless of phosphate concentration or even in the presence of soluble klotho, thus, in contrast to serum phosphate, F GF23 is not associated with arterial calcification and does not promote calcification experimentally.

314 citations

Journal ArticleDOI
TL;DR: PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1, and appears to serve redundant roles in phosphate-induced calcification in cultured human vascular smooth muscle cells.
Abstract: Objective— Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human vascular smooth muscle cells (VSMCs), but its importance in vascular calcification in vivo and the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease and the potential compensatory role of PiT-2 using in vitro knockdown and overexpression strategies. Approach and Results— Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1 Δ sm ). PiT-1 mRNA levels were undetectable, whereas PiT-2 mRNA levels were increased 2-fold in the vascular aortic media of PiT-1 Δsm compared with PiT-1 flox/flox control. When arterial medial calcification was induced in PiT-1 Δsm and PiT-1 flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1 Δsm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared with PiT-1 flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1 Δsm VSMCs. Furthermore, overexpression of PiT-2 restored these parameters in human PiT-1–deficient VSMCs. Conclusions— PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 seem to serve redundant roles in phosphate-induced calcification of VSMCs.

121 citations

Journal ArticleDOI
TL;DR: It is confirmed that the Pi concentration required to induce osteochondrogenic differentiation and matrix mineralization of mouse VSMCs was well above that required for maximal Pi uptake, suggesting a signaling function of PiT-1 that was independent of Pi transport.

84 citations

Journal ArticleDOI
TL;DR: It is suggested that patients with the novel MDR1-G1199T variant may exhibit a lower degree of MDR 1 dependent chemoresistance, and those with the G1199A polymorphism might exhibit a higher degree of resistance, compared with M DR1 wild-type patients.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect are reviewed.

1,109 citations

Journal ArticleDOI
15 Jul 1983-JAMA
TL;DR: This book succeeds Review of Medical Pharmacology, by Meyers, Jawetz, and Goldfien, and deals with relevant information regarding the clinical use of drugs on the various battlefields.
Abstract: This book succeeds Review of Medical Pharmacology , by Meyers, Jawetz, and Goldfien. Edited by B. G. Katzung, some of the important areas covered include drug receptors and pharmacodynamics, pharmacokinetics of absorption and biotransformation of drugs, autonomic pharmacology of cholinergic and adrenergic receptor stimulants and antagonists, antihypertensive agents, cardiac glycosides and other agents used in the treatment of congestive heart failure, therapeutic drugs for cardiac arrhythmias, diuretics, pharmacology of the CNS drugs such as anticonvulsants and anesthetics, antidepressants, narcotic analgesics, nonsteroidal anti-inflammatory agents, endocrine pharmacology, antimicrobial and antimycobacterial drugs, antiprotozoal and antihelmintic drugs, cancer chemotherapy, and drugs and the immune system. Written by several prominent researchers and scientists, each chapter begins with a section on the basic pharmacology, chemistry, pharmacokinetics, and pharmacodynamics of the agents under discussion. This is followed by a section on clinical pharmacology, which deals with relevant information regarding the clinical use of drugs on the various

859 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of transporters of the solute carrier family (SLC) is provided with regard to tissue distribution, subcellular localization, and substrate preferences.
Abstract: Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.

717 citations

Book ChapterDOI
01 Jan 2020
TL;DR: The US Food and Drug Administration (FDA) regulates medical devices primarily through the law known as the Federal Food, Drug, and Cosmetic Act, as Amended (FD&C Act, or “the Act”) as discussed by the authors.
Abstract: The US Food and Drug Administration (FDA) regulates medical devices primarily through the law known as the Federal Food, Drug, and Cosmetic Act, as Amended (“the FD&C Act,” or “the Act”). Regulations promulgated by FDA in Title 21 of the Code of Federal Regulations (CFR) spell out the broad provisions contained in the Act.

701 citations

Journal ArticleDOI
TL;DR: Comparison and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation are compared.
Abstract: Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture. Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC) transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with the cells able to adopt a physiological contractile phenotype or an alternate 'synthetic' phenotype in response to injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes. Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calcification may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochondrial dysfunction, and a uraemic milieu as major determinants of vascular calcification.

547 citations