scispace - formally typeset
Search or ask a question
Author

Matthew J. Carey

Other affiliations: Samsung, HGST, IBM  ...read more
Bio: Matthew J. Carey is an academic researcher from Western Digital. The author has contributed to research in topics: Magnetization & Spin valve. The author has an hindex of 37, co-authored 187 publications receiving 7139 citations. Previous affiliations of Matthew J. Carey include Samsung & HGST.


Papers
More filters
Journal ArticleDOI
TL;DR: Giant magnetoresistance in heterogeneous thin film Cu-Co alloys consisting of ultrafine Co-rich precipitate particles in a Cu-rich matrix is observed, modeled by including spin-dependent scattering at the interfaces between the particles and the matrix, as well as the spin- dependent scattering in the Co- rich particles.
Abstract: We have observed giant magnetoresistance in heterogeneous thin film Cu-Co alloys consisting of ultrafine Co-rich precipitate particles in a Cu-rich matrix. The magnetoresistance scales inversely with the average particle diameter. This behavior is modeled by including spin-dependent scattering at the interfaces between the particles and the matrix, as well as the spin-dependent scattering in the Co-rich particles.

1,566 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe an experimental demonstration of current-induced magnetic reversal of nanopillars with perpendicular anisotropy and high coercive fields, and the best results are observed for Co/Ni multilayers, which have higher giant magnetoresistance values and spin-torque efficiencies than Co/Pt multilayer.
Abstract: Devices that show a magnetic anisotropy normal to the film surface hold great promise towards faster and smaller magnetic bits in data-storage applications. We describe an experimental demonstration of current-induced magnetic reversal of nanopillars with perpendicular anisotropy and high coercive fields. The best results are observed for Co/Ni multilayers, which have higher giant magnetoresistance values and spin-torque efficiencies than Co/Pt multilayers. The reference layers were designed to have significantly higher anisotropy allowing a complete current-field phase diagram of the free-layer reversal to be explored. The results are compared to micromagnetic modelling of the free layer that, depending on the bias current and applied field, details regions of irreversible magnetic switching, coherent and incoherent spin waves, or static non-uniform magnetization states. This ability to manipulate high-anisotropy magnetic elements could prove useful for a range of spintronic applications.

1,204 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetic recording medium composed of two ferromagnetic layers separated by a nonmagnetic layer whose thickness is tuned to couple the layers antiferromagneticically.
Abstract: We describe a magnetic recording media composed of antiferromagnetically coupled (AFC) magnetic recording layers as an approach to extend areal densities of longitudinal media beyond the predicted superparamagnetic limit. The recording medium is made up of two ferromagnetic layers separated by a nonmagnetic layer whose thickness is tuned to couple the layers antiferromagnetically. For such a structure, the effective areal moment density (Mrt) of the composite structure is the difference between the ferromagnetic layers allowing the effective magnetic thickness to scale independently of the physical thickness of the media. Experimental realizations of AFC media demonstrate that thermally stable, low-Mrt media suitable for high-density recording can be achieved.

260 citations

Journal ArticleDOI
TL;DR: In this article, a shift hysteresis loop was used to investigate exchange anisotropy in 500 A CoxNi1−xO/300 A Ni81Fe19 polycrystalline bilayer couples.
Abstract: Shifted hysteresis loops were used to investigate exchange anisotropy in 500 A CoxNi1−xO/300 A Ni81Fe19 polycrystalline bilayer couples. Bilayers of Ni81Fe19 with NiO have a room‐temperature exchange field, He, of 30 Oe in the as‐deposited state. A maximum in the exchange field at room temperature was observed near x=0.4, indicating an optimal alloying of the properties of the high anisotropy CoO and the high Neel temperature NiO. The blocking temperatures of the exchange couples vary linearly with x, suggesting a linear dependence of the oxide Neel temperature with x.

192 citations

Journal ArticleDOI
TL;DR: The authors' measurements reveal the fundamental roles played independently by the torques due to charge and spin currents in breaking the magnetic symmetry on picosecond time scales.
Abstract: Time-resolved images of the magnetization switching process in a spin transfer structure, obtained by ultrafast x-ray microscopy, reveal the limitations of the macrospin model. Instead of a coherent magnetization reversal, we observe switching by lateral motion of a magnetic vortex across a nanoscale element. Our measurements reveal the fundamental roles played independently by the torques due to charge and spin currents in breaking the magnetic symmetry on picosecond time scales.

168 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
15 Apr 1994-Science
TL;DR: A negative isotropic magnetoresistance effect has been observed in thin oxide films of perovskite-like La0.67Ca0.33MnOx, which could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized.
Abstract: A negative isotropic magnetoresistance effect more than three orders of magnitude larger than the typical giant magnetoresistance of some superlattice films has been observed in thin oxide films of perovskite-like La0.67Ca0.33MnOx. Epitaxial films that are grown on LaAIO3 substrates by laser ablation and suitably heat treated exhibit magnetoresistance values as high as 127,000 percent near 77 kelvin and ∼1300 percent near room temperature. Such a phenomenon could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized. Possible mechanisms for the observed effect are discussed.

4,079 citations

Journal ArticleDOI
Shouheng Sun1, Hao Zeng1, David B. Robinson1, Simone Raoux1, Philip M. Rice1, Shan X. Wang1, Guanxiong Li1 
TL;DR: As-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD and can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made.
Abstract: High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)3, with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe3O4) nanoparticles. Similarly, reaction of Fe(acac)3 and Co(acac)2 or Mn(acac)2 with the same diol results in monodisperse CoFe2O4 or MnFe2O4 nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe3O4 can be oxidized to Fe2O3, as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.

3,244 citations

Journal ArticleDOI
TL;DR: Inter interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ is used by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane an isotropy.
Abstract: Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.

3,169 citations

Journal ArticleDOI
TL;DR: In this paper, a review of experimental and theoretical studies of anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity.
Abstract: We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical work, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents which originate from spin-orbit coupling. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors, have more clearly established systematic trends. These two developments in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of Berry-phase curvatures and it is therefore an intrinsic quantum mechanical property of a perfect cyrstal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. We review the full modern semiclassical treatment of the AHE together with the more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Finally we discuss outstanding issues and avenues for future investigation.

2,970 citations