scispace - formally typeset
Search or ask a question
Author

Matthew J. Edwards

Bio: Matthew J. Edwards is an academic researcher from Novartis. The author has contributed to research in topics: Thymic stromal lymphopoietin & Asthma. The author has an hindex of 16, co-authored 28 publications receiving 1794 citations. Previous affiliations of Matthew J. Edwards include Edward Jenner Institute for Vaccine Research.

Papers
More filters
Journal ArticleDOI
TL;DR: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo and relate to exacerbation severity, which is a novel therapeutic approach for asthma exacerbations.
Abstract: Rationale: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell–derived cytokine IL-33 plays ...

473 citations

Journal ArticleDOI
TL;DR: It is hypothesized that there is distinct airways expression of TSLP and chemokines which preferentially attract Th1- and Th2-type T cells, and influx of T cells bearing their receptors in asthma and COPD.
Abstract: Asthma and chronic obstructive pulmonary disease (COPD) are associated with Th2 and Th1 differentiated T cells. The cytokine thymic stromal lymphopoietin (TSLP) promotes differentiation of Th2 T cells and secretion of chemokines which preferentially attract them. We hypothesized that there is distinct airways expression of TSLP and chemokines which preferentially attract Th1- and Th2-type T cells, and influx of T cells bearing their receptors in asthma and COPD. In situ hybridization, immunohistochemistry, and ELISA were used to examine the expression and cellular provenance of TSLP, Th2-attracting (TARC/CCL17, MDC/CCL22, I-309/CCL1), and Th1-attracting (IP-10/CXCL10, I-TAC/CXCL11) chemokines in the bronchial mucosa and bronchoalveolar lavage fluid of subjects with moderate/severe asthma, COPD, and controls. Cells expressing mRNA encoding TSLP, TARC/CCL17, MDC/CCL22, and IP-10/CXCL10, but not I-TAC/CXCL11 and I-309/CCL1, were significantly increased in severe asthma and COPD as compared with non-smoker controls (p < 0.02). This pattern was reflected in bronchoalveolar lavage fluid protein concentrations. Expression of the same chemokines was also increased in ex- and current smokers. The cellular sources of TSLP and chemokines were strikingly similar in severe asthma and COPD. The numbers of total bronchial mucosal T cells expressing the chemokine receptors CCR4, CCR8, and CXCR3 did not significantly differ in asthma, COPD, and controls. Both asthma and COPD are associated with elevated bronchial mucosal expression of TSLP and the same Th1- and Th2-attracting chemokines. Increased expression of these chemokines is not, however, associated with selective accumulation of T cells bearing their receptors.

339 citations

Journal ArticleDOI
TL;DR: Asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro–type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.
Abstract: Rhinoviruses (RVs), which are the most common cause of virally induced asthma exacerbations, account for much of the burden of asthma in terms of morbidity, mortality, and associated cost. Interleukin-25 (IL-25) activates type 2–driven inflammation and is therefore potentially important in virally induced asthma exacerbations. To investigate this, we examined whether RV-induced IL-25 could contribute to asthma exacerbations. RV-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression, which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental RV infection. In addition, in mice, RV infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type 2 cytokine expression, mucus production, and recruitment of eosinophils, neutrophils, basophils, and T and non-T type 2 cells. Therefore, asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro–type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.

277 citations

Journal ArticleDOI
TL;DR: It is concluded that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and proposed notch2 neutralization as a therapeutic strategy for preventing gobleT cell metaPLasia in airway diseases.

195 citations

Journal ArticleDOI
TL;DR: Carbononyl-modified proteins, arising as a result of oxidative stress, promote antibody production, providing a link by which oxidative stress could drive an autoimmune response in COPD.
Abstract: Rationale: There is increasing evidence for the presence of autoantibodies in chronic obstructive pulmonary disease (COPD). Chronic oxidative stress is an essential component in COPD pathogenesis and can lead to increased levels of highly reactive carbonyls in the lung, which could result in the formation of highly immunogenic carbonyl adducts on “self” proteins. Objectives: To determine the presence of autoantibodies to carbonyl-modified protein in patients with COPD and in a murine model of chronic ozone exposure. To assess the extent of activated immune responses toward carbonyl-modified proteins. Methods: Blood and peripheral lung were taken from patients with COPD, age-matched smokers, and nonsmokers with normal lung function, as well as patients with severe persistent asthma. Mice were exposed to ambient air or ozone for 6 weeks. Antibody titers were measured by ELISA, activated compliment deposition by immunohistochemistry, and cellular activation by ELISA and fluorescence-activated cell sorter. Measurements and Main Results: Antibody titer against carbonyl-modified self-protein was significantly increased in patients with Global Initiative for Chronic Obstructive Lung Disease stage III COPD compared with control subjects. Antibody levels inversely correlated with disease severity and showed a prevalence toward an IgG1 isotype. Deposition of activated complement in the vessels of COPD lung as well as autoantibodies against endothelial cells were also observed. Ozone-exposed mice similarly exhibited increased antibody titers to carbonyl-modified protein, as well as activated antigen-presenting cells in lung tissue and splenocytes sensitized to activation by carbonyl-modified protein. Conclusions: Carbonyl-modified proteins, arising as a result of oxidative stress, promote antibody production, providing a link by which oxidative stress could drive an autoimmune response in COPD.

159 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: New ways of treating immunological diseases by targeting Treg cells at the cellular and molecular levels are envisaged.
Abstract: Immunological self tolerance is maintained at least in part by regulatory T (Treg) cells that actively and dominantly control potentially hazardous self-reactive T cells in the periphery. Antigens that stimulate self-reactive T cells may also activate natural Treg cells, thereby maintaining dominant self tolerance. Conversely, genetic anomalies or environmental agents that specifically or predominantly affect Treg cells cause or predispose to autoimmunity. With recent advances in our understanding of Treg cell development in the thymus and periphery and the molecular mechanism of Treg cell–mediated suppression, new ways of treating immunological diseases by targeting Treg cells at the cellular and molecular levels are envisaged.

1,084 citations

Journal ArticleDOI
TL;DR: How dichotomizing asthma according to levels of type 2 inflammation — into 'T helper 2 (TH2)-high' and 'TH2-low' subtypes (endotypes) — has shaped the thinking about the pathobiology of asthma and has generated new interest in understanding the mechanisms of disease that are independent of type 1 inflammation is considered.
Abstract: Asthma is one of the most common chronic immunological diseases in humans, affecting people from childhood to old age. Progress in treating asthma has been relatively slow and treatment guidelines have mostly recommended empirical approaches on the basis of clinical measures of disease severity rather than on the basis of the underlying mechanisms of pathogenesis. An important molecular mechanism of asthma is type 2 inflammation, which occurs in many but not all patients. In this Opinion article, I explore the role of type 2 inflammation in asthma, including lessons learnt from clinical trials of inhibitors of type 2 inflammation. I consider how dichotomizing asthma according to levels of type 2 inflammation--into 'T helper 2 (TH2)-high' and 'TH2-low' subtypes (endotypes)--has shaped our thinking about the pathobiology of asthma and has generated new interest in understanding the mechanisms of disease that are independent of type 2 inflammation.

1,068 citations

Patent
Austin L. Gurney1
13 Jun 2006
TL;DR: In this article, the authors presented gene expression profiles associated with solid tumor stem cells, as well as novel stem cell cancer markers useful for the diagnosis, characterization, and treatment of the stem cells.
Abstract: The present invention relates to compositions and methods for treating, characterizing, and diagnosing cancer. In particular, the present invention provides gene expression profiles associated with solid tumor stem cells, as well as novel stem cell cancer markers useful for the diagnosis, characterization, and treatment of solid tumor stem cells.

893 citations

Journal ArticleDOI
TL;DR: It is important to recognize phenotypes of patients with optimal responses to more specific therapies, and development of biomarkers that identify the therapeutic phenotypes will be important.
Abstract: Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammation affecting predominantly the lung parenchyma and peripheral airways that results in largely irreversible and progressive airflow limitation. This inflammation is characterized by increased numbers of alveolar macrophages, neutrophils, T lymphocytes (predominantly TC1, TH1, and TH17 cells), and innate lymphoid cells recruited from the circulation. These cells and structural cells, including epithelial and endothelial cells and fibroblasts, secrete a variety of proinflammatory mediators, including cytokines, chemokines, growth factors, and lipid mediators. Although most patients with COPD have a predominantly neutrophilic inflammation, some have an increase in eosinophil counts, which might be orchestrated by TH2 cells and type 2 innate lymphoid cells though release of IL-33 from epithelial cells. These patients might be more responsive to corticosteroids and bronchodilators. Oxidative stress plays a key role in driving COPD-related inflammation, even in ex-smokers, and might result in activation of the proinflammatory transcription factor nuclear factor κB (NF-κB), impaired antiprotease defenses, DNA damage, cellular senescence, autoantibody generation, and corticosteroid resistance though inactivation of histone deacetylase 2. Systemic inflammation is also found in patients with COPD and can worsen comorbidities, such as cardiovascular diseases, diabetes, and osteoporosis. Accelerated aging in the lungs of patients with COPD can also generate inflammatory protein release from senescent cells in the lung. In the future, it will be important to recognize phenotypes of patients with optimal responses to more specific therapies, and development of biomarkers that identify the therapeutic phenotypes will be important.

870 citations

Journal Article
TL;DR: It is demonstrated that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
Abstract: Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death released bacteria from macrophages, exposing them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared Legionella and Burkholderia by cytokine independent mechanisms. Our results show, for the first time, that caspase-1 can clear intracellular bacteria in vivo independent of IL-1β and IL-18, and establish pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.

808 citations