scispace - formally typeset
Search or ask a question
Author

Matthew J Peel

Bio: Matthew J Peel is an academic researcher from University of Manchester. The author has contributed to research in topics: Friction stir welding & Friction welding. The author has an hindex of 4, co-authored 4 publications receiving 888 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of microstructural, mechanical property and residual stress investigations of four aluminium AA5083 friction stir welds produced under varying conditions were reported, and it was found that the weld properties were dominated by the thermal input rather than the mechanical deformation by the tool.

666 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the processing window within which good quality welds can be produced, for the friction stir welding of AA5083 to AA6082, and found that the temperature under the tool is more strongly dependent on the rotation than the traverse speed.
Abstract: The aim of this study was to explore the so-called processing window, within which good-quality welds can be produced, for the friction stir welding of AA5083 to AA6082. To that end a systematic set of nine instrumented welds were made using rotation speeds of 280, 560, and 840 rpm and traverse speeds of 100, 200, and 300 mm/min with AA5083 on the advancing side and another nine with the materials reversed. For comparison a smaller series of AA5083-AA5083 and AA6082-AA6082 welds were also made. Thermocouple measurements, tool torque, extent of material mixing, and macrostructural observations all indicate that the temperature under the tool is more strongly dependent on the rotation than the traverse speed. It was found that in the current case, the power (energy/s) and heat input (energy/mm) do not correlate simply with the weld temperature. As a result, such metrics may not be suitable for characterizing the conditions under which welds are produced.

148 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructural response of an age-hardenable, high-strength 7449 aluminium alloy to friction stir welding was described, and the effect of initial microstructure and welding speed, in particular in the heat-affected and thermomechanically affected zones, was discussed.

109 citations

Journal ArticleDOI
TL;DR: In this paper, the spatial variation of the unstrained lattice parameter a0 across a friction stir weld in an AA7010 aluminium alloy has been measured using a novel variant of the traditional sin2-ψ method using low scattering angles in transmission rather than backscattering in the conventional reflection geometry that exploits the high penetration of high energy synchrotron X-rays.

40 citations


Cited by
More filters
Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.

1,811 citations

Journal ArticleDOI
TL;DR: A comprehensive body of knowledge has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed in this article, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects.
Abstract: The comprehensive body of knowledge that has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed The basic principles of FSW are described, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects After introducing the characteristic macroscopic features, the microstructural development and related distribution of hardness are reviewed in some detail for the two classes of wrought aluminium alloy (non-heat-treatable and heat-treatable) Finally, the range of mechanical properties that can be achieved is discussed, including consideration of residual stress, fracture, fatigue and corrosion It is demonstrated that FSW of aluminium is becoming an increasingly mature technology with numerous commercial applications In spite of this, much remains to be learned about the process and opportunities for further research a

956 citations

Journal ArticleDOI
TL;DR: In this paper, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively and a future outlook is given at the end of this review paper.

642 citations

Journal ArticleDOI
TL;DR: In this article, the origins of residual stress are understood, opportunities for removing harmful or introducing beneficial residual stresses recognized, their evolution in-service predicted, their influence on failure processes understood and safe structural integrity assessments made, so as to either remove the part prior to failure, or to take corrective action to extend life.
Abstract: Our safety, comfort and peace of mind are heavily dependent upon our capability to prevent, predict or postpone the failure of components and structures on the basis of sound physical principles While the external loadings acting on a material or component are clearly important, There are other contributory factors including unfavourable materials microstructure, pre-existing defects and residual stresses Residual stresses can add to, or subtract from, the applied stresses and so when unexpected failure occurs it is often because residual stresses have combined critically with the applied stresses, or because together with the presence of undetected defects they have dangerously lowered the applied stress at which failure will occur Consequently it is important that the origins of residual stress are understood, opportunities for removing harmful or introducing beneficial residual stresses recognized, their evolution in-service predicted, their influence on failure processes understood and safe structural integrity assessments made, so as to either remove the part prior to failure, or to take corrective action to extend life This paper reviews the progress in these aspects in the light of the basic failure mechanisms

595 citations