scispace - formally typeset
Search or ask a question
Author

Matthew J. Rosseinsky

Bio: Matthew J. Rosseinsky is an academic researcher from University of Liverpool. The author has contributed to research in topics: Perovskite (structure) & Neutron diffraction. The author has an hindex of 78, co-authored 528 publications receiving 28855 citations. Previous affiliations of Matthew J. Rosseinsky include Alcatel-Lucent & European Synchrotron Radiation Facility.


Papers
More filters
Journal ArticleDOI
18 Apr 1991-Nature
TL;DR: In this paper, low-temperature studies of potassium-doped C60 both as films and bulk samples, and demonstrate that this material becomes superconducting is demonstrated by microwave, resistivity and Meissner-effect measurements.
Abstract: THE synthesis of macroscopic amounts of C60 and C70 (fullerenes)1 has stimulated a variety of studies on their chemical and physical properties2,3. We recently demonstrated that C60 and C70 become conductive when doped with alkali metals4. Here we describe low-temperature studies of potassium-doped C60 both as films and bulk samples, and demonstrate that this material becomes superconducting. Superconductivity is demonstrated by microwave, resistivity and Meissner-effect measurements. Both polycrystalline powders and thin-film samples were studied. A thin film showed a resistance transition with an onset temperature of 16 K and essentially zero resistance near 5 K. Bulk samples showed a well-defined Meissner effect and magnetic-field-dependent microwave absorption beginning at 18 K. The onset of superconductivity at 18 K is the highest yet observed for a molecular superconductor.

2,459 citations

Journal ArticleDOI
TL;DR: Rigid wiry nets: Conjugated microporous polymer networks are formed by Sonogashira–Hagihara coupling, and the micropore size and surface area can be controlled by varying the length of the phenyleneethynylene struts.
Abstract: Rigid wiry nets: Conjugated microporous polymer networks are formed by Sonogashira–Hagihara coupling. Although these materials are amorphous, the micropore size and surface area can be controlled by varying the length of the phenyleneethynylene struts (see picture; the network is shown in blue, and one 1,3,5-substituted benzene node and three connected struts are highlighted with C gray and H white).

1,251 citations

Journal ArticleDOI
TL;DR: This Account details the work on directing the assembly of open-framework structures based on molecules and investigating how the response of nanoporous examples of such materials to guests differs from classical rigid porous systems.
Abstract: Scientific and technological interest in porous materials with molecule-sized channels and cavities has led to an intense search for controlled chemical routes to systems with specific properties. This Account details our work on directing the assembly of open-framework structures based on molecules and investigating how the response of nanoporous examples of such materials to guests differs from classical rigid porous systems. The stabilization of chiral nanoporosity by a hierarchy of interactions that both direct and maintain a helical open-framework structure exemplifies the approach.

1,170 citations

Journal ArticleDOI
05 Nov 2004-Science
TL;DR: It is observed that hysteresis in their adsorption and desorption kinetics above the supercritical temperature of H2 that reflects the dynamical opening of the “windows” between pores, which would allow H2 to be adsorbed at high pressures but stored at lower pressures.
Abstract: Adsorption and desorption of hydrogen from nanoporous materials, such as activated carbon, is usually fully reversible. We have prepared nanoporous metal-organic framework materials with flexible linkers in which the pore openings, as characterized in the static structures, appear to be too small to allow H2 to pass. We observe hysteresis in their adsorption and desorption kinetics above the supercritical temperature of H2 that reflects the dynamical opening of the "windows" between pores. This behavior would allow H2 to be adsorbed at high pressures but stored at lower pressures.

1,093 citations

Journal ArticleDOI
01 Jan 1991-Nature
TL;DR: In this paper, the authors reported the preparation of alkali-metal-doped films of C60 and C70 which have electrical conductivities at room temperature that are comparable to those attained by n-type doped polyacetylene.
Abstract: THE recent syntheses1,2 of macroscopic quantities of C60 have suggested possible applications in host–guest and organic chemistry, tribology, electrochemistry and semiconductor tech-nology. Here we report the preparation of alkali-metal-doped films of C60 and C70 which have electrical conductivities at room temperature that are comparable to those attained by n-type doped polyacetylene. The highest conductivities observed in the doped films are: 4Scm−1 (Cs/C60), 100 (Rb/C60), 500 (K/C60), 20 (Na/C60), 10 (Li/C60), 2 (K/C70). The doping process is reversed on exposure of the films to the atmosphere. At high doping levels, the films become more resistive. We attribute the conductivity induced in these films to the formation of energy bands from the π orbitals of C60 or C70, which become partially filled with carriers on doping. The smaller alkali metal ions should be able to fit into the interstices in the lattice without disrupting the network of contacts between the carbon spheroids. In the case of C60, this would allow the development of an isotropic band structure, and we therefore propose that these materials may constitute the first three-dimensional 'organic' conductors.

909 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations

Journal ArticleDOI
TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract: Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

7,186 citations

Journal ArticleDOI
TL;DR: A critical review of the emerging field of MOF-based catalysis is presented and examples of catalysis by homogeneous catalysts incorporated as framework struts or cavity modifiers are presented.
Abstract: A critical review of the emerging field of MOF-based catalysis is presented. Discussed are examples of: (a) opportunistic catalysis with metal nodes, (b) designed catalysis with framework nodes, (c) catalysis by homogeneous catalysts incorporated as framework struts, (d) catalysis by MOF-encapsulated molecular species, (e) catalysis by metal-free organic struts or cavity modifiers, and (f) catalysis by MOF-encapsulated clusters (66 references).

7,010 citations