scispace - formally typeset
Search or ask a question
Author

Matthew K. Waldor

Bio: Matthew K. Waldor is an academic researcher from Harvard University. The author has contributed to research in topics: Vibrio cholerae & Virulence. The author has an hindex of 87, co-authored 322 publications receiving 26506 citations. Previous affiliations of Matthew K. Waldor include East China University of Science and Technology & Tufts University.


Papers
More filters
Journal ArticleDOI
28 Jun 1996-Science
TL;DR: The emergence of toxigenic V. cholerae involves horizontal gene transfer that may depend on in vivo gene expression, and is shown here to be encoded by a filamentous bacteriophage (designated CTXΦ), which is related to coliphage M13.
Abstract: Vibrio cholerae, the causative agent of cholera, requires two coordinately regulated factors for full virulence: cholera toxin (CT), a potent enterotoxin, and toxin-coregulated pili (TCP), surface organelles required for intestinal colonization. The structural genes for CT are shown here to be encoded by a filamentous bacteriophage (designated CTXphi), which is related to coliphage M13. The CTXphi genome chromosomally integrated or replicated as a plasmid. CTXphi used TCP as its receptor and infected V. cholerae cells within the gastrointestinal tracts of mice more efficiently than under laboratory conditions. Thus, the emergence of toxigenic V. cholerae involves horizontal gene transfer that may depend on in vivo gene expression.

1,744 citations

Journal ArticleDOI
01 Jan 2004-Nature
TL;DR: The ‘SOS response’ to DNA damage alleviates this repression, increasing the expression of genes necessary for SXT transfer and hence the frequency of transfer, and presents a mechanism by which therapeutic agents can promote the spread of antibiotic resistance genes.
Abstract: Mobile genetic elements have a crucial role in spreading antibiotic resistance genes among bacterial populations. Environmental and genetic factors that regulate conjugative transfer of antibiotic resistance genes in bacterial populations are largely unknown1. Integrating conjugative elements (ICEs) are a diverse group of mobile elements that are transferred by means of cell–cell contact and integrate into the chromosome of the new host2. SXT is a ∼100-kilobase ICE derived from Vibrio cholerae that encodes genes that confer resistance to chloramphenicol, sulphamethoxazole, trimethoprim and streptomycin3. SXT-related elements were not detected in V. cholerae before 1993 but are now present in almost all clinical V. cholerae isolates from Asia4. ICEs related to SXT are also present in several other bacterial species and encode a variety of antibiotic and heavy metal resistance genes4,5,6,7. Here we show that SetR, an SXT encoded repressor, represses the expression of activators of SXT transfer. The ‘SOS response’ to DNA damage alleviates this repression, increasing the expression of genes necessary for SXT transfer and hence the frequency of transfer. SOS is induced by a variety of environmental factors and antibiotics, for example ciprofloxacin, and we show that ciprofloxacin induces SXT transfer as well. Thus, we present a mechanism by which therapeutic agents can promote the spread of antibiotic resistance genes.

945 citations

Journal ArticleDOI
15 Jul 1988-Cell
TL;DR: Prevention and reversal of autoimmune disease with V beta 8-specific monoclonal antibodies was achieved in EAE because of a striking similarity in fine specificity of T cell receptors.

935 citations

Journal ArticleDOI
TL;DR: The findings suggest that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli O104:H4 strain that caused the German outbreak, and highlight the way in which the plasticity of bacterial genomes facilitates the emerged of new pathogens.
Abstract: Background A large outbreak of diarrhea and the hemolytic–uremic syndrome caused by an unusual serotype of Shiga-toxin–producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin–producing E. coli have been reported — 3167 without the hemolytic–uremic syndrome (16 deaths) and 908 with the hemolytic–uremic syndrome (34 deaths) — indicating that this strain is notably more virulent than most of the Shiga-toxin–producing E. coli strains. Preliminary genetic characterization of the outbreak strain suggested that, unlike most of these strains, it should be classified within the enteroaggregative pathotype of E. coli. Methods We used third-generation, single-molecule, real-time DNA sequencing to determine the complete genome sequence of the German outbreak strain, as well as the genome sequences of seven diarrhea-associated enteroaggregative E. coli serotype O104:H4 strains from Africa and four enteroaggregative E. coli reference st...

840 citations

Journal ArticleDOI
TL;DR: This Review compares and contrasts the core functions for some of the well-studied ICEs and discusses them in the broader context of mobile-element and genome evolution.
Abstract: Integrative and conjugative elements (ICEs) are a diverse group of mobile genetic elements found in both Gram-positive and Gram-negative bacteria. These elements primarily reside in a host chromosome but retain the ability to excise and to transfer by conjugation. Although ICEs use a range of mechanisms to promote their core functions of integration, excision, transfer and regulation, there are common features that unify the group. This Review compares and contrasts the core functions for some of the well-studied ICEs and discusses them in the broader context of mobile-element and genome evolution.

692 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Few microorganisms are as versatile as Escherichia coli; it can also be a highly versatile, and frequently deadly, pathogen.
Abstract: Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes.

4,583 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: This work presents a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing.
Abstract: We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.

3,647 citations