scispace - formally typeset
Search or ask a question
Author

Matthew Patrick

Bio: Matthew Patrick is an academic researcher from University of Michigan. The author has contributed to research in topics: Psoriasis & Medicine. The author has an hindex of 14, co-authored 47 publications receiving 661 citations. Previous affiliations of Matthew Patrick include University of Cambridge & University of York.


Papers
More filters
Journal ArticleDOI
TL;DR: IFN-κ is identified as a critical IFN in CLE pathology via promotion of enhanced IFN responses and photosensitivity and is a potential novel target for UVB prophylaxis and CLE-directed therapy.
Abstract: Objective Skin inflammation and photosensitivity are common in patients with cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE), yet little is known about the mechanisms that regulate these traits. Here we investigate the role of interferon kappa (IFN-κ) in regulation of type I interferon (IFN) and photosensitive responses and examine its dysregulation in lupus skin. Methods mRNA expression of type I IFN genes was analysed from microarray data of CLE lesions and healthy control skin. Similar expression in cultured primary keratinocytes, fibroblasts and endothelial cells was analysed via RNA-seq. IFNK knock-out (KO) keratinocytes were generated using CRISPR/Cas9. Keratinocytes stably overexpressing IFN-κ were created via G418 selection of transfected cells. IFN responses were assessed via phosphorylation of STAT1 and STAT2 and qRT-PCR for IFN-regulated genes. Ultraviolet B-mediated apoptosis was analysed via TUNEL staining. In vivo protein expression was assessed via immunofluorescent staining of normal and CLE lesional skin. Results IFNK is one of two type I IFNs significantly increased (1.5-fold change, false discovery rate (FDR) q −04 ) in keratinocytes not in fibroblast and endothelial cells, and this epithelial-derived IFN-κ is responsible for maintaining baseline type I IFN responses in healthy skin. Increased levels of IFN-κ, such as seen in SLE, amplify and accelerate responsiveness of epithelia to IFN-α and increase keratinocyte sensitivity to UV irradiation. Notably, KO of IFN-κ or inhibition of IFN signalling with baricitinib abrogates UVB-induced apoptosis. Conclusion Collectively, our data identify IFN-κ as a critical IFN in CLE pathology via promotion of enhanced IFN responses and photosensitivity. IFN-κ is a potential novel target for UVB prophylaxis and CLE-directed therapy.

146 citations

Journal ArticleDOI
TL;DR: A computational pipeline involving statistical and machine-learning methods that can assess the risk of progression to PsA based on genetic markers is developed and it is shown that the underlying genetic differences between psoriasis subtypes can be used for individualized subtype risk assessment.
Abstract: Psoriatic arthritis (PsA) is a complex chronic musculoskeletal condition that occurs in ~30% of psoriasis patients. Currently, no systematic strategy is available that utilizes the differences in genetic architecture between PsA and cutaneous-only psoriasis (PsC) to assess PsA risk before symptoms appear. Here, we introduce a computational pipeline for predicting PsA among psoriasis patients using data from six cohorts with >7000 genotyped PsA and PsC patients. We identify 9 new loci for psoriasis or its subtypes and achieve 0.82 area under the receiver operator curve in distinguishing PsA vs. PsC when using 200 genetic markers. Among the top 5% of our PsA prediction we achieve >90% precision with 100% specificity and 16% recall for predicting PsA among psoriatic patients, using conditional inference forest or shrinkage discriminant analysis. Combining statistical and machine-learning techniques, we show that the underlying genetic differences between psoriasis subtypes can be used for individualized subtype risk assessment.

85 citations

Journal ArticleDOI
TL;DR: Preclinical evidence is provided to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS, with Bruton’s tyrosine kinase (BTK) and spleen tyrosinase (SYK) pathway activation as a central signal transduction network in HS.
Abstract: Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease characterized by chronic abscess formation and development of multiple draining sinus tracts in the groin, axillae, and perineum. Using proteomic and transcriptomic approaches, we characterized the inflammatory responses in HS in depth, revealing immune responses centered on IFN-γ, IL-36, and TNF, with lesser contribution from IL-17A. We further identified B cells and plasma cells, with associated increases in immunoglobulin production and complement activation, as pivotal players in HS pathogenesis, with Bruton's tyrosine kinase (BTK) and spleen tyrosine kinase (SYK) pathway activation as a central signal transduction network in HS. These data provide preclinical evidence to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS.

85 citations

Journal ArticleDOI
TL;DR: The results show that the changes accompanying the transition from non-lesional to acute to chronic inflammation in AD are quantitative rather than qualitative, with chronic AD having heightened Th2, Th1, Th17, and IL36 responses and skin barrier repair mechanisms.
Abstract: Background Although multiple studies have assessed molecular changes in chronic atopic dermatitis (AD) lesions, little is known about the transition from acute to chronic disease stages, and the factors and mechanisms that shape chronic inflammatory activity. Objectives We sought to assess the global transcriptome changes that characterize the progression from acute to chronic stages of AD. Methods We analyzed transcriptome changes in paired nonlesional skin, acute and chronic AD lesions from 11 patients and 38 healthy controls by RNA-sequencing, and conducted in vivo and histological assays to evaluate findings. Results Our data demonstrate that approximately 74% of the genes dysregulated in acute lesions remain or are further dysregulated in chronic lesions, whereas only 34% of the genes dysregulated in chronic lesions are altered already in the acute stage. Nonlesional AD skin exhibited enrichment of TNF, TH1, TH2, and TH17 response genes. Acute lesions showed marked dendritic-cell signatures and a prominent enrichment of TH1, TH2, and TH17 responses, along with increased IL-36 and thymic stromal lymphopoietin expression, which were further heightened in chronic lesions. In addition, genes involved in skin barrier repair, keratinocyte proliferation, wound healing, and negative regulation of T-cell activation showed a significant dysregulation in the chronic versus acute comparison. Furthermore, our data show progressive changes in vasculature and maturation of dendritic-cell subsets with chronicity, with FOXK1 acting as immune regulator. Conclusions Our results show that the changes accompanying the transition from nonlesional to acute to chronic inflammation in AD are quantitative rather than qualitative, with chronic AD having heightened TH2, TH1, TH17, and IL36 responses and skin barrier repair mechanisms. These findings provide novel insights and highlight underappreciated pathways in AD pathogenesis that may be amenable to therapeutic targeting.

77 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Anubha Mahajan, Daniel Taliun, Matthias Thurner, Neil R. Robertson, Jason M. Torres, N. William Rayner, Anthony Payne, Valgerdur Steinthorsdottir, Robert A. Scott, Niels Grarup, James P. Cook, Ellen M. Schmidt, Matthias Wuttke, Chloé Sarnowski, Reedik Magill, Jana Nano, Christian Gieger, Stella Trompet, Cécile Lecoeur, Michael Preuss, Bram P. Prins, Xiuqing Guo, Lawrence F. Bielak, Jennifer E. Below, Donald W. Bowden, John C. Chambers, Young-Jin Kim, Maggie C.Y. Ng, Lauren E. Petty, Xueling Sim, Weihua Zhang, Amanda J. Bennett, Jette Bork-Jensen, Chad M. Brummett, Mickaël Canouil, Kai-Uwe Ec Kardt, Krista Fischer, Sharon L.R. Kardia, Florian Kronenberg, Kristi Läll, Ching-Ti Liu, Adam E. Locke, Jian'an Luan, Loanna Ntalla, Vibe Nylander, Sebastian Schoenherr, Claudia Schurmann, Loic Yengo, Erwin P. Bottinger, Ivan Brandslund, Cramer Christensen, George Dedoussis, Jose C. Florez, Ian Ford, Timothy M. Frayling, Vilmantas Giedraitis, Sophie Hackinger, Andrew T. Hattersley, Christian Herder, M. Arfan Ikram, Martin Ingelsson, Marit E. Jørgensen, Torben Jørgensen, Jennifer Kriebel, Johanna Kuusisto, Symen Ligthart, Cecilia M. Lindgren, Allan Linneberg, Valeriya Lyssenko, Vasiliki Mamakou, Thomas Meitinger, Karen L. Mohlke, Andrew D. Morris, Girish N. Nadkarni, James S. Pankow, Annette Peters, Naveed Sattar, Alena Stančáková, Konstantin Strauch, Kent D. Taylor, Barbara Thorand, Gudmar Thorleifsson, Unnur Thorsteinsdottir, Jaakko Tuomilehto, Daniel R. Witte, Josée Dupuis, Patricia A. Peyser, Eleftheria Zeggini, Ruth J. F. Loos, Philippe Froguel, Erik Ingelsson, Lars Lind, Leif Groop, Markku Laakso, Francis S. Collins, J. Wouter Jukema, Colin N. A. Palmer, Harald Grallert, Andres Metspalu, Abbas Dehghan, Anna Koettgen, Gonçalo R. Abecasis, James B. Meigs, Rotter, Jerome, I, Jonathan Marchini, Oluf Pedersen, Torben Hansen, Claudia Langenberg, Nicholas J. Wareham, Kari Stefansson, Anna L. Gloyn, Andrew P. Morris, Michael Boehnke, McCarthy, Mark, I 
01 Jan 2018
Abstract: We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).Combining 32 genome-wide association studies with high-density imputation provides a comprehensive view of the genetic contribution to type 2 diabetes in individuals of European ancestry with respect to locus discovery, causal-variant resolution, and mechanistic insight.

379 citations

Journal ArticleDOI
TL;DR: Qualitative approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer are outlined.
Abstract: Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.

344 citations

Book ChapterDOI
01 Jan 2019
TL;DR: This chapter presents a survey of recent advances, over the past decade, related to the fundamental problems of mutation testing and sets out the challenges and open problems for the future development of the method.
Abstract: Mutation testing realizes the idea of using artificial defects to support testing activities. Mutation is typically used as a way to evaluate the adequacy of test suites, to guide the generation of test cases, and to support experimentation. Mutation has reached a maturity phase and gradually gains popularity both in academia and in industry. This chapter presents a survey of recent advances, over the past decade, related to the fundamental problems of mutation testing and sets out the challenges and open problems for the future development of the method. It also collects advices on best practices related to the use of mutation in empirical studies of software testing. Thus, giving the reader a “mini-handbook”-style roadmap for the application of mutation testing as experimental methodology.

317 citations