scispace - formally typeset
Search or ask a question
Author

Matthew Reinke

Bio: Matthew Reinke is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Alcator C-Mod & Divertor. The author has an hindex of 45, co-authored 263 publications receiving 5893 citations. Previous affiliations of Matthew Reinke include Princeton Plasma Physics Laboratory & Max Planck Society.
Topics: Alcator C-Mod, Divertor, Tokamak, Heat flux, Plasma


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an improved energy confinement regime, I-mode, is studied in Alcator C-Mod, a compact high-field divertor tokamak using ion cyclotron range of frequencies (ICRFs) auxiliary heating.
Abstract: An improved energy confinement regime, I-mode, is studied in Alcator C-Mod, a compact high-field divertor tokamak using ion cyclotron range of frequencies (ICRFs) auxiliary heating. I-mode features an edge energy transport barrier without an accompanying particle barrier, leading to several performance benefits. H-mode energy confinement is obtained without core impurity accumulation, resulting in reduced impurity radiation with a high-Z metal wall and ICRF heating. I-mode has a stationary temperature pedestal with edge localized modes typically absent, while plasma density is controlled using divertor cryopumping. I-mode is a confinement regime that appears distinct from both L-mode and H-mode, combining the most favourable elements of both. The I-mode regime is investigated predominately with ion ∇B drift away from the active X-point. The transition from L-mode to I-mode is primarily identified by the formation of a high temperature edge pedestal, while the edge density profile remains nearly identical to L-mode. Laser blowoff injection shows that I-mode core impurity confinement times are nearly identical with those in L-mode, despite the enhanced energy confinement. In addition, a weakly coherent edge MHD mode is apparent at high frequency ~100–300 kHz which appears to increase particle transport in the edge. The I-mode regime has been obtained over a wide parameter space (BT = 3–6 T, Ip = 0.7–1.3 MA, q95 = 2.5–5). In general, the I-mode exhibits the strongest edge temperature pedestal (Tped) and normalized energy confinement (H98 > 1) at low q95 ( 4 MW). I-mode significantly expands the operational space of edge localized mode (ELM)-free, stationary pedestals in C-Mod to Tped ~ 1 keV and low collisionality , as compared with EDA H-mode with Tped . The I-mode global energy confinement has a relatively weak degradation with heating power; leading to increasing H98 with heating power.

251 citations

Journal ArticleDOI
X. Litaudon, S. Abduallev1, Mitul Abhangi, P. Abreu2  +1225 moreInstitutions (69)
TL;DR: In this paper, the authors reviewed the 2014-2016 JET results in the light of their significance for optimising the ITER research plan for the active and non-active operation, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric.
Abstract: The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at β N ∼ 1.8 and n/n GW ∼ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.

162 citations

Journal ArticleDOI
TL;DR: Marmar et al. as discussed by the authors used high-resolution charge exchange recombination spectroscopic measurements of B5+ ions for the first spatially resolved calculations of the radial electric field (Er) in the Alcator C-Mod pedestal region.
Abstract: High-resolution charge-exchange recombination spectroscopic measurements of B5+ ions have enabled the first spatially resolved calculations of the radial electric field (Er) in the Alcator C-Mod pedestal region [E. S. Marmar, Fusion Sci. Technol. 51, 261 (2006)]. These observations offer new challenges for theory and simulation and provide for important comparisons with other devices. Qualitatively, the field structure observed on C-Mod is similar to that on other tokamaks. However, the narrow high-confinement mode (H-mode) Er well widths (5 mm) observed on C-Mod suggest a scaling with machine size, while the observed depths (up to 300 kV/m) are unprecedented. Due to the strong ion-electron thermal coupling in the C-Mod pedestal, it is possible to infer information about the main ion population in this region. The results indicate that in H-mode the main ion pressure gradient is the dominant contributor to the Er well and that the main ions have significant edge flow. C-Mod H-mode data show a clear correl...

158 citations

Journal ArticleDOI
TL;DR: The SPARC tokamak is a critical next step towards commercial fusion energy as discussed by the authors, and it is designed as a high-field high-energy particle accelerator relevant to fusion power plants.
Abstract: The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field () relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.

153 citations

Journal ArticleDOI
TL;DR: In this paper, the behavior of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analysed and modelled with a combination of neoclassical and gyrokinetic codes.
Abstract: The behaviour of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analysed and modelled with a combination of neoclassical and gyrokinetic codes In these discharges, good confinement conditions can be maintained only for the first 2?3?s of the high power phase Later W accumulation is regularly observed, often accompanied by the onset of magneto-hydrodynamical activity, in particular neoclassical tearing modes (NTMs), both of which have detrimental effects on the global energy confinement The dynamics of the accumulation process is examined, taking into consideration the concurrent evolution of the background plasma profiles, and the possible onset of NTMs Two time slices of a representative discharge, before and during the accumulation process, are analysed with two independent methods, in order to reconstruct the W density distribution over the poloidal cross-section The same time slices are modelled, computing both neoclassical and turbulent transport components and consistently including the impact of centrifugal effects, which can be significant in these plasmas, and strongly enhance W neoclassical transport The modelling closely reproduces the observations and identifies inward neoclassical convection due to the density peaking of the bulk plasma in the central region as the main cause of the accumulation The change in W neoclassical convection is directly produced by the transient behaviour of the main plasma density profile, which is hollow in the central region in the initial part of the high power phase of the discharge, but which develops a significant density peaking very close to the magnetic axis in the later phase The analysis of a large set of discharges provides clear indications that this effect is generic in this scenario The unfavourable impact of the onset of NTMs on the W behaviour, observed in several discharges, is suggested to be a consequence of a detrimental combination of the effects of neoclassical transport and of the appearance of an island

142 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Proceedings ArticleDOI
23 Aug 1992
TL;DR: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour.
Abstract: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour. / Is oat contribu6 h la qualit6 scientifique et ,5 I'hmuog6t~6it6 pr6sentationntlle de leurs articles en refondant les versions iuitiales soumises an comit6 de programme, ea acceptant de suivre les r~gles de pr6sentation indiqu6es, et en nous envoyant parrots plusieurs versions am61ior6es surun point ou sur l'autrc.

824 citations

Journal ArticleDOI
TL;DR: In this paper, Belitz et al. presented a survey of the state-of-the-art in condensed-matter physics, focusing on the following papers: Condensed Matter Physics (Theoretical) J. IGNACIO CIRAC, Max-Planck-Institut für Quantenoptik Quantum Information RAYMOND E. GOLDSTEIN, University of Cambridge Biological Physics ARTHUR F. HEBARD and DAVID D. KAMIEN.
Abstract: Associate DIETRICH BELITZ, University of Oregon Editors: Condensed Matter Physics (Theoretical) J. IGNACIO CIRAC, Max-Planck-Institut für Quantenoptik Quantum Information RAYMOND E. GOLDSTEIN, University of Cambridge Biological Physics ARTHUR F. HEBARD, University of Florida Condensed Matter Physics (Experimental) RANDALL D. KAMIEN, University of Pennsylvania Soft Condensed Matter DANIEL KLEPPNER, Massachusetts Institute of Technology Atomic, Molecular, and Optical Physics (Experimental) PAUL G. LANGACKER, Institute for Advanced Study, Princeton University Particle Physics (Theoretical) VERA LÜTH, Stanford University Particle Physics (Experimental) DAVID D. MEYERHOFER, University of Rochester Physics of Plasmas and Matter at High-Energy Density WITOLD NAZAREWICZ, University of Tennessee, Oak Ridge National Laboratory Nuclear Physics JOHN H. SCHWARZ, California Institute of Technology Mathematical Physics FRIEDRICH-KARL THIELEMANN, Universität Basel Astrophysics Senior Assistant Editor: DEBBIE BRODBAR, APS Editorial Office American Physical Society

774 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations