scispace - formally typeset
Search or ask a question
Author

Matthew S. Povich

Bio: Matthew S. Povich is an academic researcher from California State Polytechnic University, Pomona. The author has contributed to research in topics: Star formation & Stars. The author has an hindex of 44, co-authored 114 publications receiving 7697 citations. Previous affiliations of Matthew S. Povich include Harvard University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: More than 70 refereed papers have been published based on GLIMPSE data as of 2008 November as mentioned in this paper, and some serendipitous discoveries have been made on evolved stars.
Abstract: A brief description is given of the GLIMPSE surveys, including the areas surveyed, sensitivity limits, and products. The primary motivations for this review are to describe some of the main scientific results enabled by the GLIMPSE surveys and to note potential future applications of the GLIMPSE catalogs and images. In particular, we discuss contributions to our understanding of star formation and early evolution, the interstellar medium, galactic structure, and evolved stars. Infrared dark clouds (IRDCs), young stellar objects (YSOs), and infrared bubbles/H II regions are discussed in some detail. A probable triggered star formation associated with expanding infrared bubbles is briefly mentioned. The distribution and morphologies of dust and polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium are discussed. Examples are shown from GLIMPSE images of bow shocks, pillars (elephant trunks), and instabilities in massive star-formation regions. The infrared extinction law of diffuse interstellar dust is discussed. The large-scale structure of the Galaxy has been traced by red-clump giants using the GLIMPSE point-source catalog to reveal the radius and orientation of the central bar, the stellar radial scale length, an obvious increase in star counts toward the tangency to the Scutum-Centaurus spiral arm, the lack of an obvious tangency from star counts toward the Sagittarius spiral arm, and a sharp increase in star counts toward the nuclear bulge. Recent results on evolved stars and some serendipitous discoveries are mentioned. More than 70 refereed papers have been published based on GLIMPSE data as of 2008 November.

1,092 citations

Journal ArticleDOI
TL;DR: In this article, a visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that represent partially or fully enclosed three-dimensional bubbles.
Abstract: A visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H II regions, and about 13% enclose known star clusters. It appears that B4-B9 stars (too cool to produce detectable radio H II regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O-B3 stars that produce detectable radio H II regions. Some of the bubbles may be the outer edges of H II regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. Only three of the bubbles are identified as known SNRs. No bubbles coincide with known planetary nebulae or W-R stars in the GLIMPSE survey area. The bubbles are small. The distribution of angular diameters peaks between 1' and 3' with over 98% having angular diameters less than 10' and 88% less than 4'. Almost 90% have shell thicknesses between 0.2 and 0.4 of their outer radii. Bubble shell thickness increases approximately linearly with shell radius. The eccentricities are rather large, peaking between 0.6 and 0.7; about 65% have eccentricities between 0.55 and 0.85.

602 citations

Journal ArticleDOI
TL;DR: In this paper, a catalog of extended green objects (EGOs) is presented, including integrated flux density measurements at 3.6, 4.5, 5.8, 8.0, and 24 μm from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE).
Abstract: Using images from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we have identified more than 300 extended 4.5 μm sources (Extended Green Objects (EGOs), for the common coding of the [4.5] band as green in three-color composite InfraRed Array Camera images). We present a catalog of these EGOs, including integrated flux density measurements at 3.6, 4.5, 5.8, 8.0, and 24 μm from GLIMPSE and the Multiband Imaging Photometer for Spitzer Galactic Plane Survey. The average angular separation between a source in our sample and the nearest IRAS point source is greater than 1'. The majority of EGOs are associated with infrared dark clouds (IRDCs), and where high-resolution 6.7 GHz CH3OH maser surveys overlap the GLIMPSE coverage, EGOs and 6.7 GHz CH3OH masers are strongly correlated. Extended 4.5 μm emission is thought to trace shocked molecular gas in protostellar outflows; the association of EGOs with IRDCs and 6.7 GHz CH3OH masers suggests that the extended 4.5 μm emission may pinpoint outflows specifically from massive protostars. The mid-IR colors of EGOs lie in regions of color-color space occupied by young protostars still embedded in infalling envelopes.

497 citations

Journal ArticleDOI
TL;DR: The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 Myr −1. This situation persists despite the potential for the Milky way to serve as the ultimate SFR calibrator for external galaxies as mentioned in this paper.
Abstract: The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 Myr −1 . This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for external galaxies. We show that various estimates for the Galactic SFR are consistent with one another once they have been normalized to the same initial mass function (IMF) and massive star models, converging to 1.9 ± 0.4 Myr −1 . However, standard SFR diagnostics are vulnerable to systematics founded in the use of indirect observational tracers sensitive only to high-mass stars. We find that absolute SFRs measured using resolved low/intermediate-mass stellar populations in Galactic Hii regions are systematically higher by factors of ∼2-3 compared with calibrations for SFRs measured from mid-IR and radio emission. We discuss some potential explanations for this discrepancy and conclude that it could be allayed if (1) the power-law slope of the IMF for intermediate-mass (1.5 M�

357 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a highly reliable flux-limited census of 18,949 point sources in the Galactic midplane that have intrinsically red mid-infrared colors, which consist mostly of high and intermediate-mass young stellar objects (YSOs) and asymptotic giant branch (AGB) stars.
Abstract: We present a highly reliable flux-limited census of 18,949 point sources in the Galactic midplane that have intrinsically red mid-infrared colors. These sources were selected from the Spitzer Space Telescope Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) I and II surveys of 274 deg2 of the Galactic midplane, and consist mostly of high- and intermediate-mass young stellar objects (YSOs) and asymptotic giant branch (AGB) stars. The selection criteria were carefully chosen to minimize the effects of position-dependent sensitivity, saturation, and confusion. The distribution of sources on the sky and their location in the Infrared Array Camera and the Multiband Image Photometer for Spitzer 24 μm color-magnitude and color-color space are presented. Using this large sample, we find that YSOs and AGB stars can be mostly separated by simple color-magnitude selection criteria into approximately 50%-70% of YSOs and 30%-50% of AGB stars. Planetary nebulae and background galaxies together represent at most 2%-3% of all the red sources. 1004 red sources in the GLIMPSE II region, mostly AGB stars with high mass-loss rates, show significant (≥0.3 mag) variability at 4.5 and/or 8.0 μm. With over 11,000 likely YSOs and over 7000 likely AGB stars, this is to date the largest uniform census of AGB stars and high- and intermediate-mass YSOs in the Milky Way Galaxy.

271 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: SDSS-III as mentioned in this paper is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars.
Abstract: Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)

2,265 citations

15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the evolution of the star-forming galaxy (SFG) main sequence (MS) in stellar mass and star formation rate (SFR) out to z ~ 6.4 Gyr.
Abstract: Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) main sequence (MS) in stellar mass and star formation rate (SFR) out to z ~ 6. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations (~0.1 dex 1σ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we deconvolve the observed scatter about the MS within each observed redshift bin. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is ~0.2 dex and remains constant over cosmic time. Our best fits indicate the slope of the MS is likely time-dependent, with our best-fit log SFR(M_*, t) = (0.84 ± 0.02 – 0.026 ± 0.003 × t)log M_* – (6.51 ± 0.24 – 0.11 ± 0.03 × t), where t is the age of the universe in Gyr. We use our fits to create empirical evolutionary tracks in order to constrain MS galaxy star formation histories (SFHs), finding that (1) the most accurate representations of MS SFHs are given by delayed-τ models, (2) the decline in fractional stellar mass growth for a "typical" MS galaxy today is approximately linear for most of its lifetime, and (3) scatter about the MS can be generated by galaxies evolving along identical evolutionary tracks assuming an initial 1σ spread in formation times of ~1.4 Gyr.

1,336 citations

Journal ArticleDOI
TL;DR: In this article, a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation are presented, including monolithic collapse in isolated cores, competitive accretion in a protocluster environment, stellar collisions and mergers in very dense systems.
Abstract: Although fundamental for astrophysics, the processes that produce massive stars are not well understood. Large distances, high extinction, and short timescales of critical evolutionary phases make observations of these processes challenging. Lacking good observational guidance, theoretical models have remained controversial. This review offers a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation: ▪ monolithic collapse in isolated cores ▪ competitive accretion in a protocluster environment ▪ stellar collisions and mergers in very dense systems We also review the observed outflows, multiplicity, and clustering properties of massive stars, the upper initial mass function and the upper mass limit. We conclude that high-mass star formation is not merely a scaled-up version of low-mass star formation with higher accretion rates, but partly a mechanism of its own, primarily owing to the role of stellar mass ...

1,332 citations